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PHYSICALLY-BASED PARAMETERIZATION OF SPATIALLY VARIABLE

SOIL AND VEGETATION USING SATELLITE MULTISPECTRAL DATA

Abstract

A stochastic---geometric landsurface reflectance model is formulated and tested

for the parameterization of spatially variable vegetation and soil at subpixel scales
using satellite multispectral images without ground truth. Landscapes are

conceptualized as three---dimensional Lambertian reflecting surfaces consisting of
plant canopies, represented by solid geometric figures, superposed on a flat soil
background. Multiple scattering among landsurface components is neglected. The

model is cast within the framework of an existing theoretical model of upwelling
solar radiance for optically-thin atmospheres, as observed by a nadir-viewing
satellite.

A computer simulation program is developed in order to investigate image
characteristics at various spatial aggregations representative of satellite
observational scales, or pixels. In particular, the evolution of the shape and

structure of the red-infrared space, or scattergram, of typical semivegetated scenes
is investigated by sequentially introducing model variables into the simulation. The
correlation between canopy and shadow is identified as a principal mechanism

contributing to the frequently observed tasseled cap of red-infrared scattergrams of
semivegetated landscapes. A Sampling Scale Ratio is formulated as a quantitative
criterion that identifies when that correlation occurs.

The analytical moments of the total pixel reflectance, including the mean,
variance, spatial covariance, and cross---spectral covariance, are derived in terms of
the moments of the individual fractional cover and reflectance components. The
moments are applied to the solution of the inverse problem: The estimation of

subpixel landscape properties on a pixel-by-pixel basis, given only one
multispectral image and limited assumptions on the structure of the landscape. The
inverse procedure involves the formulation of conditional moments for subsets of

pixels that possess similar properties, and that can be identified through their
common orientation in red-infrared scattergrams. The analysis is facilitated by
assuming geometric similarity among canopy elements and by assuming a functional
relationship between fractional covers in the case of large Sampling Scale Ratios.

The landsurface reflectance model and inversion technique are tested using
actual aerial radiometric data collected over regularly spaced pecan trees, and using
both aerial and Landsat Thematic Mapper data obtained over discontinuous,
randomly spaced conifer canopies in a natural forested watershed. For the Landsat
case, adjacency effects are neglected by assuming low interpixel contrast. Different

amounts of solar backscattered diffuse radiation are assumed and the sensitivity of
the estimated landsurface parameters to those amounts is examined.
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Chapter 1

INTRODUCTION

1.1 Objectives

The purpose of this research is to formulate and test a physically-based

reflectance model that characterizes the spatial variability of multispectral images

obtained over semivegetated landscapes. The immediate objective is to develop a

flexible, physically-based algorithm for estimating the amount of subpixel

vegetation cover (i.e. horizontal fractional cover) on a pixel-by-pixel basis using

only one set of satellite multispectral data under clear-sky conditions, without

ground truth, and without having to compute the numerous scattering and

absorption parameters that govern atmospheric radiative transfer. The focus is on

natural landscapes that exhibit random behavior in the size and location of

individual plants, and in the soil background reflectance. The goal is to

accomodate both the subpixel scales associated with the bulk physical properties of

the plant canopy (overall geometry, height, and diameter) as well as the regional

scales associated with the variability in soil background reflectance. The

long-term objective is to provide a framework for the physically-based

parameterization of mesoscale landsurface hydrology using remote multispectral

observations.

1.2 Background

The physically-based parameterization of the large--scale coupled heat and

moisture fluxes of semivegetated landscapes is a unsolved problem in hydrology

(NASA, 1988). The principal difficulty arises from the complex spatial and

18



temporal heterogeneity of the interrelated hydrological, geophysical, and biological

processes, as well as the many landsurface variables which define them. The

hydrologic variables, including soil moisture, vegetation type and amount,

hydraulic conductivity, and temperature, often exhibit random behavior and

possess spatial scales of variation that are much smaller than the overall scale of

the parameterization (mesoscale or greater). Such heterogeneity limits the fidelity

of the usual homogeneous mathematical description of individual hydrologic

processes (evapotranspiration, infiltration and runoff) and engenders the formidable

logistical problem of how to acquire regionally representative hydrologic data in an

efficient, cost-effective manner.

Most classical approaches to mesoscale investigations, such as flood

forecasting, river basin management, and environmental impact assessment, rely on

standard hydrometeorological data obtained at ground-based stations. Such

stations, usually few in number, are often located at airports or agricultural

research sites and almost never in remote watersheds. Regional surface fluxes are

generally estimated using an area-weighted extension of point estimates calculated

for the ground station data. However, since the ground stations do not necessarily

capture all of the basinwide spatial variability in soil, vegetation and climate, and

since the location of a station itself may be biased toward a particular hydrologic

regime, the accuracy of that approach is highly uncertain.

The problem is more critical in global-scale hydrologic parameterizations, as

modeled within atmospheric general circulation models (GCMs). Those models

possess typical grid scales (100 km) which are much greater than the spatial scale

of fluctuation of the hydrologic processes themselves (i.e. 1-100 km, See

Smagorinsky, 1978). Although, traditionally, many GCMs prescribed simple

surface flux models (i.e. Manabe, 1969; Washington and Parkinson, 1986), more

19



detailed algorithms have been recently proposed which include a large number of

soil and vegetation properties (e.g. Dickinson, 1984; Rind, 1984; and Sellers et ai,

1986). However, the practical benefit of those newer, more sophisticated

paxameterizations is not realized due to the lack of spatially detailed global

landsurface hydrologic data.

A specific need for more detailed spatial landsurface data may be beneficial

for estimating subsurface properties, through the application of a time-averaged

one--dimensional statistical-dynamic representation of the climate-soil-vegetation

system. Eagleson (1982) mathematically formulated three interrelated hypotheses

describing the short, medium, and long-term equilibrium states of soil, vegetation,

and climate for natural undisturbed systems. He argued that in water-limited

systems, the short-term ecological pressure minimizes water demand stress through

adjustment of vegetation canopy amount, the medium term pressure selects plant

species for minimum water use, and in the long term, vegetation and climate

modify soil properties in the root zone in a synergistic manner to reach a

climatic-climax state such that biomass productivity is maximized. Limited

testing of those hypotheses have been made on several catchments (Eagleson and

Tellers, 1982) and on two savanna systems (Eagleson and Segarra, 1985).

Estimstion of Soil Hydraulic Pro_rties. Jasinski (1987) proposed to apply

the equilibrium hypotheses to estimate soil hydraulic properties of natural

water-limited systems, using vegetation density estimated from satellite data. A

critical step in this analysis was the development of an algorithm for estimating

spatially-variable fractional canopy cover, which controls the bounds of the

rejection probability of the hypothesis. He collected extensive data for that

investigation which is currently underway (See Jasinski and Eagleson, 1986;

Eagleson and Jasinski, 1988).
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1.3 ADDlicati0n of Satellite Radiometri¢ Observations to Regioni_l H_.L4LQ!P_

The critical need for detailed spatial and temporal knowledge of regional

landsurface processes has led researchers to investigate the application of

electromagnetic radiation data obtained from satellite platforms. Those data

consist of instantaneous, spatially integrated observations of the electromagnetic

radiation fluxes emitted or reflected from the earth's surface and atmosphere. The

reasonableness of this approach rests not only in the relative facility of covering

extensive areas in a matter of seconds, but also in the fact that many of the

physical properties which describe the heat and moisture fluxes (i.e. landsurface

and atmosphere composition, temperature) also govern radiative transfer.

Unknown landsurface and atmospheric properties are theoretically determined by

solving the inverse problem. That is, given a set of remote electromagnetic

observations, one inverts the radiative transfer equation using a particular

wavelength, or combination of wavelengths, so that the parameters of the

reflecting surface and the medium can be retrieved. The challenge lies in carefully

choosing specific wavelengths within the spectrum which respond to the presence

(or absence) of the particular object or constituent under investigation.

Although the theoretical radiative transfer aspects of remote sensing are well

understood (i.e. Chandrasekhar, 1960; American Society of Photogrammetry

(ASP), 1983; Slater, 1980; Tsang et al, 1985), because of the variability and large

number of landsurface and atmospheric parameters, and the limited number of

satellite systems, the use of remotely sensed data alone has not been sufficient to

estimate landsurface fluxes as of date. Successful retrieval of individual

landsurface parameters has been achieved (See ASP, 1983), however, which can be

incorporated into classical surface heat and moisture flux equations. For example,
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the microwave portion of the spectrum has beenshown to be sensitive to soil

moisture content becauseof the large contrast between the dielectric properties of

liquid water and dry soil (Schmugge,1983). The visible and near-infrared

portions of the spectrum are sensitive to vegetation amount due to the contrast in

reflectancebehavior betweensoil and healthy green vegetation (Colwell, 1974).

Thermal infrared wavelengthshave beenshown to be sensitive to surfaceand

atmospheric temperature (Chahine, 1983). The published results of those

investigations are too numerousto mention, although an excellent summary of the

responseof different wavelengthsto particular landsurfaceproperties is provided in

ASP (1983).

Most evapotranspiration investigations which have been reported typically

combine one or more remotely sensedlandsurface variables, such as albedo and

temperature, with ground basedmeteorological data, and apply them to classical

sensibleand latent heat flux terms in the energy balanceequation. Several studies

over relatively homogenousagricultural areashave employed either airborne or

hand-held radiometers. Camillo et al (1983) developedan energy and moisture

balance model of the upper soil and lower atmosphere for use with remotely sensed

surface temperature and soil moisture and standard meteorological data, and

applied the model over bare soil. A similar approach was later used by Gurney

and Carnillo (1984) over wheat and barley. Van de Griend and van Boxel (1989)

extended the approach to include multilayer canopy representation, and tested the

model over maize. Reginato et al (1985) combined remotely sensedreflected solar

radiation and surface temperatures using airborne sensors, with ground

meteorological data to calculate net radiation and sensible heat flux over wheat.

Theoretically, the same approach as above can be used for investigating

surface fluxes using satellite-based sensors. However, practical application has
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been limited due to complexities arising from atmosphericeffects and the problem

of characterizing landsurfaceheterogeneity, especially with regard to vegetation

and soil moisture. Most hydrologic studies using remote sensingdata limit the

study area to spatially homogeneouslandscapes,or they assumespatial

homogeneity. Price (1982) applied visible and thermal infrared data from the

Heat Capacity Mapping Mission (HCMM), to the energy balance equation to

estimate landsurface thermal inertia and moisture availability over principally

grassland areas in Washington and Oregon. Similar approaches have been used by

Carlson (1986) using GOES data over grasslands in Kansas, and by Taconet et al

(1986) using AVHRR data over wheat, and by Pierce and Congalton (1988) using

simulated TM data over mixed conifer forests in California.

While it is evident from above that significant progress has been achieved in

the analytical treatment of satellite data for regional hydrologic investigations,

there is substantial need for additional research. Ongoing programs within the

International Satellite Land-Surface Climatology Project (ISLSCP), such as the

First ISLSCP Experiment (FIFE) (Sellers et al, 1988; Hall et al 1989) and the

Hydrological Atmosphere Pilot Experiments (HAPEX) (Andre, 1986) are currently

bringing into focus the current limitations, and research needs, for applying

satellite data to the study of landsurface hydrological processes. Research areas

include developing methods to improve extraction of all the information hidden in

the multispectral data, as well as rethinking the basic structure of classical energy

and moisture balance equations to accommodate the particular characteristics of

satellite data.

A recurrent problem identified by many of the above studies is the

characterization of the spatial variability of vegetation amount, whether it be

fractional cover, biomass, or leaf area. Knowledge of vegetation cover is
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hydrologically important with regard to the partitioning of bare soil evaporation

and transpiration, as with its influence on albedo, moisture storage, and surface

temperature. Currently, however, no physically-based technique exists for

estimating vegetation amount for large areas using only multispectrai data. Most

estimation procedures are empirical, involving ratios, differences, or

transformations of signals in red and near infrared bands (Perry and

Lautenschlager, 1984). Such indices respond to changes in vegetation amount

primarily due to i) the relatively high radiation absorption capacity of chlorophyll

in the red band, and ii) the high reflectance properties of the leaf structure in the

near infrared band, as compared to soil. Despite that sensitivity to vegetation

amount, however, vegetation indices provide only limited understanding of the

physical structure of the scene. They generally require a large number of training

samples and can exhibit inordinate scatter for equivalent amounts of vegetation.

1.4 Physically-Based Estimation of Subuixel Vegetation Cover

The physically-based characterization of spatially variable plant cover, using

satellite multispectral data, is a critical constraint to hydrologic parameterization

in many semivegetated landscapes. An important example is the natural semiarid

region of most of the southwest United States, which typically consists of a

random distribution of different size tree or shrub canopies interspersed with a

mixture of grasses and bare soil. Also important are agricultural lands during

early growth stage, in which the crops are more uniform in size and spacing, and

separated primarily by bare soil.

One of the major problems in trying to use satellite multispectral data in

semivegetated regions is that the plant canopy or size typically varies at
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characteristic scales (severalmeters) much smaller than the spatial resolution of

current satellite pixels (several tens of meters). At the sametime, soil

background reflectance varies over a wide range of length scales (meters to several

thousand meters) due to geoclimatic factors affecting its physical structure and

chemical composition. Since satellite observations integrate the reflectance of all

elements within the pixel, subpixel information such as fractional cover, leaf area,

surface roughness, is apparently lost. Thus, techniques are needed to disaggregate

the individual subpixel components, while accounting for the variations in both

soil and vegetation reflectance.

The above problem of estimating subpixel vegetation cover can be

graphically illustrated using Figures 1.1 through 1.4. Figure 1.1 depicts a

hypothetical landscape viewed through a red filter, in which the plants appear as

dark circular disks of constant reflectance and of random size and distribution.

The plants are superimposed on various soils which can possess different

reflectances as indicated by the different shading on the figure. Also drawn on the

scene is the outline of nine satellite pixels, each of which contains any number of

trees or any type of soil background.

Figure 1.2 illustrates the remotely-sensed image of the scene in Figure 1.1

using the same red filter. Only one reflectance value exists for each pixel,

obtained through the sensor's spatial integration of the reflectances of all the

elements in the pixel. Thus, the subpixel information (size, number and

distribution of the trees, distribution of soil reflectance) can not be discerned.

The same scene as viewed in the near infrared spectrum is depicted in Figure

1.3. In that band the plants generally appear brighter than the soil. The soil

reflectance, although brighter than in the red region, possesses approximately the

same spatial distribution. The remotely-sensed image of the near infrared scene

also averages out the components of the pixel, as shown in Figure 1.4.
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The inverse problem can be summarized in the following questions. Given

only the two remotely-sensed images, to what extent can the subpixel properties

of the original scene be retrieved? Can a physically-based inverse method be

developed that exploits the true multispectral nature of the data (i.e. two

observations per pixel), by incorporating cross spectral correlations? Are there

assumptions with regard to the geometry or spatial distribution of the plants and

the soil, which may be useful toward the solution? Also, are there particular

relationships between the soil and vegetation which preclude certain solutions, such

as the relationship between soil reflectance and vegetation amount, or vegetation

amount and shadow? Those questions need to be considered to adequately address

this problem.

In the real world, the problem is still more complex than the preceding

example, especially for large---scale parameterizations. In addition to subpixel

variations, one encounters many regional-scale variations in soil and vegetation

reflectance due to a variety of geoclimatic factors. For instance, changes in slope

and aspect induce corresponding changes in scene reflectance through an effective

altering of the illumination and viewing angles. Changes in elevation, slope, and

aspect also cause scene variability through their indirect influence on such

properties as soil moisture, and vegetation species and density. Vegetation

reflectance can change with plant size and density, and with changes in underlying

soil reflectance. In such regions the stochastic nature of the vegetation and soil

properties must be accommodated. Thus, the problem consists of trying to

discern, through the interpretation of multispectral data, not only the small-scale

(i.e. subpixel) variability, but also the regional---scale correlations that might exist.

The ability to estimate regionally variable subpixel vegetation cover would

be invaluable to the solution of the large--scale parameterization problem.
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Successful development of such an algorithm h_ potential utility for investigating

not only vegetation amount but also other surface geophysical properties requiring

subpixel resolution.

1.5 Physical Basis of P_cd-Infr_red _ preliminary Analysis

A common attribute of the red-infrared data spaces of vegetated images is

that they often take on a triangular shape, or tasseled cap. The physical basis of

this shape was first investigated by Kauth and Thomas (1976) using the Suits

model (1972) applied to a homogeneous layer of crops. They explained the

seasonal progression of the tasseled cap in terms of the growth, maturation, and

senescence of crops.

It was shown during the initial stages of this research that individual images

of many natural semivegetated landscapes also exhibit triangular shapes when

plotted in the red-infrared space (Jasinski, 1987). Three such scattergrams,

constructed using three segments of Bands 2 and 4 of a Landsat 2 Multispectral

Scanner (MSS) image in the vicinity of Taos, New Mexico, are shown in Figures

1.5 through 1.7. The first triangular scattergram, Figure 1.5, consists of a plot of

the red-infrared data pairs of all the pixels in a segment covering about 400

square kilometers. The region contains a variety of semivegetated landscapes,

ranging from bare soils, grasses shrubs along the fiat lands in the valley, to

pinyon-juniper in the foothills, to ponderosa pine and douglas firs in the

mountains. The resulting characteristic triangular plot is generally fiat at the

base, but curved along the top. Figure 1.6 contains a smaller segment of pixels

covering about 25 square kilometers, located principally in the foothills region

dominated by pinyon-juniper trees. The resulting shape is also triangular in form,
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but much smaller than in Figure 1.5 and with data pairs exhibiting.overail lower

values. Finally, Figure 1.7 possesses pixels obtained primarily over 80 square

kilometers of grasslands. The scattergram again exhibits a triangular shape, but

with a wider base than from the foothills region.

Although triangular in shape, the above scattergrams possess many features

not present in the Kauth-Thomas investigation. For example, they were

constructed from natural vegetated regions and from only one MSS image.

Further, individual pixels of the scene possessed different amounts of vegetation

species, cover, soil and topography. Thus, the physical mechanisms which lead to

those triangular shapes can not be explained simply in terms of the season growth

of plants as noted by Kauth and Thomas.

Using a simple area-weighted combination of vegetation and soil reflectances,

it was demonstrated that the characteristic triangular shapes of red-infrared

scattergrarns could be explained in terms of percent canopy cover, variable soil

and vegetation reflectance, and shadows (Jasinski, 1987). For instance, using

typical values of vegetation and soil reflectance, the hypothetical data space of a

landscape possessing constant vegetation reflectance, variable soil reflectance, and

variable canopy cover is, in fact, a triangle (see Figure AI.1). The effect of

changes in either the vegetation or soil reflectances causes an equal response in the

shape or position of the triangle (Figures A1.2 and A1.3). The inclusion of

shadows cast by conical figures causes the triangle to take on a tasseled cap

(Figure A1.4). By assuming a linear relation between vegetation reflectance and

percent cover, the data space takes on curved sides (Figure A1.5). Other

variations in plant or soil parameters, such as leaf area index and soil moisture,

can be shown to cause similar effects on the red-infrared scattergram.

The above exercise demonstrated that a key to solving the inverse problem

lay in an understanding of the physical basis of the red-infrared scattergram. It
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further showedthat the problem of estimating subpixel vegetation cover was

inherently tied to the distribution of other landscapeproperties as well, in

particular, soil background reflectanceand shadows. That early discovery

provided impetus to the direction of the methodology followed in this thesis.

1.6 Elaboration of Goals and Methodology

The research in this report addresses the parameterization of vegetation and

soil of natural semi-arid regions using multispectral data, for application in

large--scale hydrology. Specific goals and methodology are summarized below.

The first step is the formulation of a physically-based canopy-soil reflectance

model that characterizes the spatial variability of multispectral images of

semivegetated landscapes at both subpixel and regional scales. A

stochastic--geometric reflectance model is developed for that purpose, as it is

flexible enough to represent the possible stochastic nature of the distribution of

vegetation and soil, but not so detailed as to render its practical application

infeasible. The landsurface reflectance model is cast within the framework of an

existing theoretical model of upwelling radiance observed by a nadir-viewing

satellite.

The second step is the development of an understanding of the shape and

structure of red-infrared scattergrams in terms of the physical properties of the

landscape. That is achieved through computer simulations of idealized

semivegetated landscapes using the above canopy--soil reflectance model. The

principal mechanisms that contribute to the evolution of the triangular shape of

red-infrared scattergrams are identified through the sequential altering of a given

variable in the model.
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Next, an inverse method is developedfor estimating fractional (i.e. subpixel)

canopy cover on a pixel-by-pixel basis using only multispectral data without

ground truth. The inverse procedure chosenfor the analysis is the method of

moments in which the theoretical moments of the canopy--soilreflectance model

are derived and equated to the actual moments of the multispectral image. The

procedure makes use of the understanding of the shape and structure of the

red-infrared scattergram, as it requires writing conditional moments for portions of

the scattergram where the pixels are assumed to possess one or more similar

attributes. The inverse procedure is further facilitated by assuming geometric

similarity among the plant and shadow geometry, and through the formulation of

a functional relationship among the fractional covers based on the similarity

parameter and an assumed spatial distribution of the plants. A Sampling Scale

Ratio is developed, based on the relative scales of the cover components relative to

the scale of the pixel, which quantifies when the correlation among fractional

covers exists.

After testing the inverse method on the simulated images to determine its

effectiveness, the inverse procedure is then tested on actual aerial and satellite

multispectral data. The field sites include one agricultural area and one natural

forested scene, both in Arizona. Other properties of the landscape, such as the

spatial distribution of soil reflectance, are also examined at that time.
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Chapter 2

RADIANCE OBSERVED BY SATELLITE

This chapter briefly reviews existing fundamental radiative transfer theory

related to remote sensing of landsufface properties from a satellite platform. The

purpose is to provide an analytical framework, using an existing model of

surface-reflected and atmospheric-scattered radiance, into which the canopy-soil

reflectance model developed in Chapter 4 can be incorporated. While the

principles in the present chapter generally apply to all wavelengths and media, the

emphasis is on visible and near-infrared wavelengths interacting in the earth's

atmosphere. Particular characteristics relevant to Landsat Multispectral Scanner

(MSS) and Thematic Mapper (TM) sensors are reviewed.

2.1 Radiative Transfer

2.1.1 Dcfiniti0ns and Nomenclature

The propagation of electromagnetic energy of a particular wavelength, )_, is

described in terms of the specular radiance, Ls(X ), defined as the specular radiant

energy flux per unit wavelength per unit solid angle per unit of projected area in a

specified direction. A graphical illustration of radiance emerging from an

elemental area, dA, centered at P(x,y,z) is drawn in Figure 2.1. The sketch

depicts a portion of specular radiant flux, dqbs()_), that emerges from dA and that

is confined within the solid angle, d_. The flux makes an angle 0 with the

vertical z axis, and an angle _p with the x axis in a clockwise manner when viewed

from the bottom.
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Figure 2.1 Graphical illustration of radiance.
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Mathematically, the relation between specular radiance and radiant flux is

given by,

Ls(A ) = d2¢(A) (2.1)
dlldAcos0

where the units of radiant flux are Watts per micrometer (W _m -1) and those of

radiance are Watts per square meter per steradian per micrometer (W m -2

sr -l_m -1).

Integration of the specular radiance over a finite bandwidth yields the total

radiance within that interval of the spectrum, or

A2

L(A) = _A1 Ls(A')dA' (2.2)

where now A represents the center of the band, and the units are Watts per

square meter per steradian (W m -2 sr-1). While this measure is also specular in

the sense that it represents the radiation only within a particular bandwidth, for

simplicity, the adjective "specular" is deleted as the wavelength dependency is

adequately represented by the nomenclature.

The integration of the radiance emitted from dA over the entire spherical

angle is termed radiant exitance, M(A), or

M(A) = J L(A) cosO dg_ (2.3)
2_

It possesses units of Watts per square meter per micrometer (W m-2gm-1).
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The total radiance impinging on a surface from all directions can be .defined in an

analogous manner and is termed irradiance, E(A), having the same units.

A beam of radiation impinging on a surface at a given angle can be

reflected, absorbed, and transmitted. The relative amounts of each component, as

well as the direction of the reflected radiation, depend on the properties of both

the incident beam (i.e. wavelength, angle of incidence) and the properties of the

surface (i.e. roughness and chemical composition, etc.). Figure 2.2 illustrates the

geometry describing reflectance due to a source beam, L'(A;0',¢') impinging on dA,

as viewed from an observer located at (0,¢). The observed beam, dL(A;0,¢)

represents only a portion of the total radiation reflected from the surface, as

radiation is simultaneously being scattered in other directions. This angular

dependent reflectance, due to a single source, is termed bidirectional reflectance,

dR(A;8',¢';0,¢). It is a dimensionless quantity and is mathematically defined,

dR( A; 0' , ¢' ;0, ¢) dL(A:8.¢) cos8 _tfl
= L' (A;0', ¢')cos0' dgt' (2.4)

When the incident radiation arrives from sources throughout the entire

hemispherical angle, a useful quantity is the bidirectional reflectance distribution

function (BRDF), or

f( )_;0' ,¢' ; 0, ¢) = dE(A;g,dL()_:0"O)¢') (2.5)

with units of inverse steradians (sr -1) (Slater, 1980).

When the reflected radiation is independent of angle, the surface is described

as Lambertian. In many practical remote sensing investigations over natural

landscapes, surface reflectance can often be assumed as Lambertian, especially at
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low zenith angles (Slater, 1980). One exception is water which exhibits

bidirectional reflectance. The specular reflectance, R()_), of a Lambertian surface

is simply,

R(A) rL_._ (2.6)
- E(A)

(Slater, 1980). It is also a dimensionless quantity.

2.1.2 Radiative Transfer Eauati0n

A beam of radiation traversing a medium can be attenuated due to

absorption and scattering, or enhanced by emission and multiple scattering, as it

interacts with the medium. A graphical sketch of this process is shown in Figure

2.3. For atmospheric applications, it is often sufficient to assume a plane-parallel

medium in which the stratification lies along the z axis (vertical). In such cases

the radiative transfer equation in its most general form is,

/_ _0 L(A.r'.u.¢)r = L(2,r;,_,¢) - J(2,r,/AC;,P) (2.7)

where J represents the source function (W m-2sr-l_m-1),/_ equals cos0, and r is

the optical thickness (dimensionless). The source function characterizes all the

scattering and emission from external sources which enhance the intensity of the

beam. The optical thickness normalizes the path length with respect to the

different scattering and absorption processes that the beam encounters. The

quantities J and r are functions of both the wavelength of the beam and the

composition of the medium.
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The angular distribution of the scattered radiation is described by the phase

function, P()_;0,_), where 0 is the direction of the incoming radiation, and ( is the

direction of the scattered radiation. It is incorporated into the radiative transfer

equation through the source function, J. The exact form of the phase function

depends on both the wavelength and the size and shape of particles of the

medium.

The formal solution of the radiative transfer equation is obtained by

integrating it over the interval (rl, r2) , or,

L(A;r2;tt,¢) = L(A;rl;_,¢)e"{r2- rl) + frT"_ j(A;r,;#,C;,p)e--{r2 - 7")/# dT" /#

(2.s)

(Chandrasekhar, 1960). The solution consists of two terms. The first term on the

right hand side represents the direct beam which is attenuated in accordance with

the optical thickness. The second term represents an augmentation in intensity

due to external scattering and emission into the beam. The actual solution

requires knowledge of the behavior of r and J throughout the medium.

2.2 Radiance Observed bv N_dir-Viewing Satellite

2.2.1 Scattering and Absorvtion Mechanisms of a Clear Atmosphere

It is useful to examine the principal scattering, absorption, and emission

mechanisms which govern radiative transfer at visible and near-infrared

wavelengths (0.4 - 1.3 #m) in the earth's atmosphere under clear-sky conditions.

Clear atmospheres consist principally of gaseous molecules, particle aerosols (dust),

water droplets and ice crystals. Gas molecules are the smallest constituent,

43



generally much less than 0.1 /_m in diameter. Their spatial and temporal

distribution depend on the specific gas. Many of the principal gases, such as

nitrogen, oxygen, and argon, exhibit relatively constant vertical distributions with

time. Other important gases, such as ozone, carbon dioxide, and sulfur dioxide,

are variable with time. Water vapor can show significant horizontal and vertical

spatial variability over time intervals as short as hours (Liou, 1980).

Aerosols include solid particulates and haze water droplets that range in size

from 0.1 prn to 1.0 imp. The largest atmospheric particles include cloud water

droplets and ice crystals with mean sizes between 1.0 _n and 10 _m. The

aerosols are also highly variable in time and space (Iqbal, 1980).

All the above atmospheric constituents scatter solar radiation. The amount

and direction of scatter depends on the relative scale of the incident wavelength as

compared to the size and shape of the particle, as well as the volume density of

the particles. When the size of the particles is much smaller than the size of the

wavelength, scattering can be represented by Rayleigh scattering. Most gas

molecules in the atmosphere contribute to scattering in the visible and

near-infrared wavelengths approximately according to that mechanism (Slater,

1980), although for clear skies, the greatest scatter occurs at the shorter

wavelengths (i.e. 0.4_nn). When the particle sizes are comparable to or larger

than the wavelength, the scattering is termed Mie scattering. Aerosols, cloud

droplets, and ice crystals scatter solar radiation according to the Mie mechanism

(Liou, 1980).

Absorption due to transitions in molecular energy levels occur throughout

the visible and near-infrared spectrum, although the greatest effect is observed in

the near-infrared region. Diatomic oxygen has three weak absorption bands

centered at 0.63, 0.69, and 0.76 _Tn (Iqbal, 1983). Ozone absorbs from 0.45 to
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0.77 /_m. Water vapor absorbs at 0.72, 0.81, 0.94, 1.10, 1.38, and 1.87/ran.

Carbon dioxide exhibits weak absorption bands 1.4, 1.6, and 2.0 _ (Liou, 1980).

Although the integrated effects of all the different types of scattering and

absorption are a complex phenomenon, the solution to the radiative transfer

equation is facilitated by treating many of the processes in an additive manner.

An important quantity to which this applies is the optical thickness. For the

atmosphere, r(A) can be treated as a sum of optical thicknesses due to Rayleigh

scattering by gas molecules, rR(A), Mie scattering by aerosolS, rM(A), and

absorption by gas molecules, ra(A ) (Liou, 1980), or

=  R(A)+  M(A)+  a(A) (2.9)

Practically, the total optical thickness of clear skies (low aerosol density and

water content) is much less than 1.0. For example, observations over southern

Arizona during the dry season typically range from about 0.5 at 0.4/m_ to less

than 0.1 at 1.5/_m (Slater, 1980), with perturbations occurring at the principal

absorption bands of water vapor. The decreasing trend is principally due to the

decrease in Rayleigh scatter with increasing wavelength. Cloudy, aerosol-laden

skies can possess optical thicknesses greater than 10 (Chahine, 1983).

2.2.2 _ _ at the _ of the A tmosuher¢ Under Clear Skies

The radiance leaving the top of the atmosphere depends on numerous

complex factors including the solar zenith angle, ground reflectance and

topography, and atmospheric composition. Despite the complexity, analytical

solutions for the theoretical nadir radiance observed by a satellite for the case of a

cloudless sky have been derived by several authors (See for example, Kaufman,
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1982; Dave, 1980; Otterman and Fraser, 1979,Otterman et al, 1980; and

Otterman, 1978, 1981). The general approach in most of those models is to

assumesingle scattering and to treat the total outgoing radiance as the sum of

direct and diffuse components. The single scattering assumption has been shown

to be appropriate for small optical thicknesses(i.e. less than about 0.5) (Bugnolo,

1960).

The purpose of this section is not to review the merits of the above

referenced models, but to select and describe one of them for the purpose of

providing a framework for incorporation of the stochastic landsurface reflectance

model presented in Chapter 4. Although any one of the models could be selected,

the formulation by Otterman and Fraser is presented because it incorporates many

of the atmospheric processes identified above, as well as the reflectances of the

target pixel and surrounding pixels.

Otterman and Fraser (1979) developed an analytically attractive theoretical

expressions for the nadir radiance as measured by a satellite, for the case when the

target pixel possesses a different reflectance than the surrounding area. Their

concern was to account for adjacency effects, that is, the contribution of light

scattered from areas surrounding of the target pixel into the sensor's field of view.

The authors' approach was to treat the total nadir radiance observed by the

satellite as the sum of three components as depicted in Figure 2.4. First, the

direct beam component, Lr(_), represents the portion of solar irradiance reflected

vertically from the target pixel that is attenuated by atmospheric effects, or

Lr(A ) = R(A)E(A)exp[-r(A)]/r (2.10)
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Figure 2.4 Graphical illustration of direct and scattered diffuse

components of radiance at the zenith

(After Otterman and Fraser, 1979).
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where R(_) is the reflectance of the target pixel, assumed Lambertian, and E()Q is

the global surface irradiance on the object pixel (Otterman, 1978).

A second term, La(,_), accounts for adjacency effects, or more specifically,

the portion of diffuse radiance scattered from the surrounding vicinity into the

column above the object pixel. It is expressed,

_r/2

La(A) = [a(A)E(A)/_'r(A)] I [1-exp[-r(A)/cos,]] COs'[rR(A)PR(A,,)

0

where

PR,PM

+ rM(A)PM(A,f)]2rsin f df (2.11)

= average reflectance of the adjacent area,

= phase functions associated with Rayleigh and aerosol (Mie)

scattering, respectively, and

= zenith reflection angle.

The size of the area surrounding the target pixel that contributes to this diffuse

term is discussed by Otterman and Fraser (1979).

Finally, the third component, Ld(A), describes the radiance scattered from

the direct solar beam into the direction of the satellite due to atmospheric effects,

or

Ld(A ) =

#{1 -exp[-r(A)(1 + sec 0)]} [ rR(A)PR(A;180" - 0) + rM(A)PM(A;180" - 0)]

r(A)( 1 + _)

(2.12)

where 0 is the solar zenith angle.
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The total radiance observed by a nadir-viewing satellite is the sum of the

direct and two diffuse terms, or

L(A) = Lr(A ) + La(A ) + Ld(A ) (2.13)

For the case of optically thin atmospheres, and for clusters of pixels which do not

exhibit highly contrasting reflectances, the direct beam constitutes the major

portion of the observed radiance. Exact percentages are difficult to quantify since,

as indicated by (2.10) through (2.13), their relative proportions are functions of

numerous variables including surface reflectance, optical thickness, and solar angle.

Further, most field studies have been conducted over oceans which possess low

surface reflectance (Chahine, 1983), and thus, they provide limited insight on

problems over landsurfaces. However, investigations by Otterman and Fraser

(1979) and Chahine (1983) suggest that the relative magnitude of the direct beam

ranges from approximately 70 percent of the total nadir radiance for an optical

thicknesses of about 0.1 and surface reflectance of about 0.4, to as much as 95

percent for an optical thickness of 0.02 and the same surface reflectance. The

direct beam percentage decreases with increasing optical thickness and decreasing

surface reflectance.

2.3 _ of Landsat Sensors

Five Landsat satellites were launched between 1972 and 1986 for the purpose

of investigating earth resources. The technical specifications of the Multispectral

Scanner System (MSS) and the Thematic Mapper (TM) aboard those satellites are

well documented (See, for example Freden and Gordon, 1983; Lillesand and Kiefer,

1987). Several important features relevant to this thesis are summarized below.
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The MSS sensors on Landsats 1, 2, and 3 are line--scanning devices covering

185 km swaths in four spectral bands. Those include two in the visible spectrum

at 0.5--0.6/_m (green) and 0.6-0.7/_m (red), and two in the near-infrared at

0.7-0.8/gn and 0.8-1.1 #m. The satellite orbits are sun-synchronous, crossing the

equator at 9:42 a.m. local sun time. The instantaneous field of view (IFOV) is

square with a ground resolution of 79 meters on a side. The total field of view of

the scan is 11.6 degrees and the quantization range of the sensor is 64 digital

numbers (DN). The return period of the sensor for the same area is 18 days.

The TM sensors on Landsats 4 and 5 have a total of seven bands that

possess greater sensitivity, finer ground resolution and narrower bandwidths than

their MSS counterparts. The spectral bandpasses include three in the visible

region at 0.45-0.52/an (blue), 0.52-0.60/m_ (green), and 0.63--0.69/m'l (red), and

four in the infrared at 0.76-0.90 #rn, 1.55-1.75 mm, 10.4-12.5/an (thermal), and

2.08-2.35/a_n. The TM data are collected at 30 meter ground resolution at a

quantization of 256 DNs. The orbit is sun-synchronous with an equatorial

crossing at 11:00 a.m. local sun time, and with a 16 day return period.
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Chapter 3

VEGETATION AND SOIL REFLECTANCE

3.1 Reflectance of Homogeneous Canopies

The radiation reflected from horizontally homogeneous canopies results from

the scattering and reflectance properties of the plant components and soil

background. These properties are both geometric and biophysical in nature and

thus depend on the species, maturity and overall health of the plant, and on the

structure and composition of the underlying soil. Geometric plant properties

include plant architecture, total leaf area, and leaf structure, orientation and

distribution. Biophysical properties allocate the radiative energy absorbed by the

plant to important metabolic processes including photosynthesis, respiration, and

transpiration. Those biophysical properties are manifested in terms of leaf color,

transparency, temperature, and shape and orientation. Plant properties can vary

dally and seasonally, in response to soil moisture and nutrients, and to

meteorologic and climatic conditions.

3.1.1 Spectral Distribution

A typical spectral distribution of healthy green vegetation, as compared to

soil, is shown in Figure 3.1. In the visible spectrum, vegetation reflectance is

characterized primarily by the absorption of light by chlorophyll in the leaves.

Strong absorption bands are centered at 0.45/an (blue) and 0.67/_m (red),

resulting in a local peak reflectance at about 0.54 /_m that corresponds to the

green portion of the spectrum. In the near-infrared region, vegetation reflectance

is dominated principally by scattering properties of the internal structure of the
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plant, such as the spongy mesophyll of leaves. High scattering in this region

results in comparatively high overall reflectance by the plant.

Actual reflectances of plants in the visible and near infrared are well

documented, especially for crops (Smith, 1983; Myers, 1983). It is typically low in

the visible spectrum (< 30%) and higher in the near infrared region (40 - 50%).

Canopy reflectances are generally much lower than those measured for individual

leaves (Dickinson, 1983). Kondratyev (1969), Gates (1980), Ross (1981) and Iqbal

(1983) provide summaries of reflectances for various vegetation types.

In contrast to vegetation, soil reflectance generally exhibits increasing

reflectance with wavelength, as shown in Figure 3.1. Overall magnitudes are

governed by grain size distribution, soil moisture, organic content, etc. (Myers,

1983). Some of the important factors are examined later in this chapter.

3.1.2 RefleCtanCe Models

Numerous radiative transfer models for horizontally homogeneous canopies

have been developed in terms of various plant properties and background soil

reflectance. Typically, homogeneous canopies have been modeled as a diffusing

medium with absorbing and scattering properties. Excellent reviews of these

models are provided by Smith (1983) and Ross (1981). Suits (1972) envisioned a

plant canopy as an infinitely extended plane-parallel medium with homogeneous

geometric properties. Verhoeff and Bunnik (1981) extended the Suits model to

include the effect of leaf angle distribution. Dickinson (1983) applied the

two--stream approximation for radiation transfer in the atmosphere (Meador and

Weaver, 1980) to plant canopies employing the leaf area index as a measure of the

optical depth. Recent literature has increased the sophistication of those earlier

models to include the modeling of bidirectional reflectance (Camillo, 1987;
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Walthall et al., 1985; Chen, 1985; Simmer and Gerstl, 1985; Vanderbilt and

Grant, 1985; Strebel et al., 1985; Gerstl and Zardecki, 1985; and Reyna and

Badhwar, 1985).

Semiempirical formulas for the total radiation fluxes have been proposed for

practical applications. The attenuation of radiation as it passes through a plant

stand has been typically described in terms of some form of Bouguer's Law such

as that proposed by Monsi and Saeki (1953), or

E()_;¢) = Eo(A ) exp[-/_()_)¢] (3.1)

where

Wo( ) = intensity of incoming radiation at top of canopy

= intensity of radiation at a penetration level associated with leaf

area index,

= experimentally determined extinction coefficient

When the upwelling radiance from the canopy represents only the backscattered

solar radiation from the plant (i.e. no soil effects), then the plant reflectance,

Rm()_;_ ), is defined

Rm(A;{ ) = 1 - e -_(A)¢ (3.2)

Other semiempirical formulas which account for the partitioning of transmitted,

scattered, and absorbed radiation, have been proposed (Ross, 1981).

Attention has also been focused on the invertibility of reflectance models of

homogeneous canopies for estimating plant parameters such as leaf area index,
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biomass, and leaf angle distribution (Goel and Strebel, 1983; Goel et al., 1984;

Goel and Thompson, 1984a, 1984b, 1984c; Lang et al., 1985). Goel and Thompson

(1984c) have shown that such parameters can, in principle, be estimated using

multispectral data at approximately 25 combinations of solar zenith angle and

viewing angle.

3.2 Reflectance of _ Canooi¢_

Most natural landscapes will vary both horizontally and vertically in species

and/or vegetation density. Modeling this situation has received considerably less

attention than that for homogeneous canopies. Statistical techniques have been

employed for classifying landscapes based on their similar spectral signatures (See

summary by Lillesand and Kiefer, 1987). However, such methods require the

identification of training samples and therefore can not be adopted for natural

landscapes in which all target pixels possess unique spectral characteristics.

Radiative transfer models for non-homogeneous canopies have been developed

by extending homogeneous canopy models and including three--dimensional

scattering functions (Ross, 1981; Kimes et al, 1985). Such models can be solved in

a few cases where plant distribution is periodic, such as for sown crops (Suits,

1985). Inversion of such models, using only multispectral observations, also

require a large number of data at different angles (Goel and Thompson, 1984c).

For regional scale investigations of natural systems, the application of the

above radiative transfer models, using Landsat data or any other current satellite

multispectral sensor (i.e SPOT, AVHRR), is clearly infeasible. The first

constraint is simply that any of those systems provides only one observation per

overpass. Additionally, however, the regional-scale heterogeneity in plant species_
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size and architecture would prohibit making any assumptions on the distribution

of plant parameters.

3.2.1 Prooorti0n Models

In many regional scale hydrologic investigations, it is generally sufficient to

know only the amount of vegetation and the outgoing radiance at its surface, and

not the complex architecture within the plant. In such cases the pixel has been

described in terms of its bulk components, that is vegetation, soil, and shadow.

A simple approach has been to assume that the surface reflectances of

individual plant clusters and soils within a pixel are constant, and that the total

spectral response is a linear combination of the individual spectral responses of its

components (Horwitz et al., 1971; Nalepka et al., 1972; Work, 1974; McCloy, 1980;

Dozier, 1981; Ungar and Bryant, 1981; Chhikara, 1984, Lenningtion et al, 1984).

The total radiance emitted from a pixel, M(A), containing n cover types can be

expressed

where

n

M(A) = _ fiMi(A) (3.3)

i=l

fi

Mi(,_)

= fraction of area covered by type i, and

= radiance emitted from cover type i in band A.

For the simple case of vegetation and soil cover, Equation (3.3) becomes:

M(,_) = mMm(_ ) + (1- m)Mg(,k) (3.4)
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m

Mm(A) ,Mg(A)

= percent vegetation cover

= radiances emitted from vegetation and soil,

respectively, in band ,_.

Perhaps the earliest development of proportion estimation can be attributed

to Horwitz et al. (1971) and Nalepka et al. (1977) who also termed the method

"mixtures estimation". One of its first applications was in identifying subpixel

scale ponding and wet marshes in glaciated prairies (Work, 1974).

McCloy (1980) later proposed that under conditions of negligible canopy

transmission or multiple reflection, the response proportions of the various land

covers will closely approximate the physical proportions of each type of cover. He

suggested that up to four sub-pixel categories be used including three levels of

vegetation greenness cover and one soil background cover. Ungar et ai. (1981)

reported limited success delineating forest canopy types in Maine using a similar

approach which they termed the "Fanning algorithm". The fractional area was

determined by minimizing the error between observed and theoretical radiances.

3.2.2 Geometric Models

In an extension to the linear proportion model described above, some

investigators have considered the shadow cast by vegetation as an additional

component to the total radiance. These models abstract clumps of vegetation as

three-dimensional geometric shapes on flat horizontal surfaces with constant

reflectances (Otterman, 1981, 1984; Otterman and Weiss, 1984; Strahler and Li,

1981; Li and Strahler, 1985). The distribution of the elements themselves can be

geometric, as in the case of row crops, or statistical, as for natural vegetated

landscapes. In most cases, the surfaces are assumed Lambertian and scattering

between vegetation and soil is neglected.
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Geometric models have been successfully used to describe much of the

variability of semivegetated landscapes by altering the shape and density of the

geometric elements. Otterman (1981, 1984) and Otterman and Weiss (1984)

envisioned forests and desert vegetation as thin vertical cylinders. They accounted

for the shadowing effects of vegetation, but assumed that the horizontal area of

the plants was negligible. That model is thus not directly applicable to the

determination of fractional vegetation cover.

Richardson et al (1975) modeled crop canopies as rectangular rows,

neglecting scattering between the crop and soil. Jackson et al (1979) extended the

above model to include shadowed canopy effects.

Strahler and Li (1981) and Li and Strahler (1985) modeled conifer forests as

randomly located cones of similar shape and random height. They determined

from simple geometry the shadow cast by the cones on the soil background or on

other cones. The total radiance emitted by a pixel was assumed to consist of four

components: illuminated background, illuminated cones, shadowed background and

shadowed cones. Vegetation parameters including percent cover and average tree

height were then estimated using assumed values of component reflectances.

3.3 _ Pattern of Vegetation

The application of geometric models to natural watersheds generally requires

assumptions on the statistical distribution of plant spacing. Several authors (see,

for example, Whittaker, 1975; Diggle, 1983) have focused on the problem of fitting

stochastic models to spatial point patterns of natural (undisturbed) vegetation.

Diggle (1983) found that the most appropriate stochastic representation for a given
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situation was speciesdependent,with several forest speciesfollowing a Poisson

distribution or a Poissoncluster process.

Significant progressin incorporating statistical spatial distributions into the

analysisof remotely senseddata has only recently been achieved (Strahler and Li,

1981; Li and Strahler, 1985; Woodcock, 1985). Li and Strahler (1985) and

Strahler and Li (1979) assumed a homogeneous Poisson distribution of conifer tree

locations. Woodcock (1985) used a similar model to examine the relation among

the scale of pixel components, resolution size, and two indicators of spatial

correlation: the variogram and the local variance.

3.4 Soil Reflectance

Soil background reflectance often exhibits high variability in semivegetated

scenes. It varies over a wide range of length scales due to changes in the physical

structure and chemical composition of the near surface soil. Small-scale

perturbations (meters or less) occur with changes in mineral content, water and

organic matter content, particle size, soil texture and surface roughness.

Numerous experimental investigations have examined the relationship between bare

soil reflectance and those parameters (for a summary, see Myers, 1983).

Soil reflectance also varies at larger geophysical scales. For example, the

presence of hills will change soil reflectance due to an effective altering of the

illumination and viewing angles. Changes in elevation, slope, and aspect will

influence soil moisture and organic matter content. Subsurface variations in

geologic formations will affect mineral content. Those geophysical factors impose

a spatial correlation to soil reflectance at scales of 10 to 103 meters.
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In addition to spatial correlations, soil reflectance can also be

cross-correlated at different wavelengths. These wavelength dependent correlations

are manifested in multispectral scattergrarns of real scenes through the preferred

location and orientation of bare soil pixels (see, for example, Kauth and Thomas,

1976; Richardson and Wiegand, 1977; Huete et al, 1985). For red-infrared

scattergrams of typical semivegetated scenes, the data often take on the form of a

triangle whose base consists of a straight line emanating from approximately the

origin. Researchers have identified that base line, consisting primarily of pixels

containing bare soil and dry vegetation, as the "soil line'*.

Analysis of previously published theoretical and experimental studies (for

example Cierniewski, 1987; Smith, 1983; Bowers and Hanks, 1965; Skidmore et al,

1975) indicates that for a given type of soil variability, the soil reflectance at one

wavelength is often functionally related to the reflectance in another wavelength.

In many cases, the relation can be approximated by a simple linear expression

R(A2) = aR(A,) + 7 (3.5)

where the slope, a, and intercept, 7, are coefficients dependent on both the wave--

length and the type of variability. Thus, variability of any one soil parameter can

lead to a representative "line" in a two--dimensional scattergram.

For instance, Figure 3.2 contains three hypothetical visible-infrared scatter-

grams, representing three different scenes, in each of which only one soil parameter

is allowed to vary. In Scene 1 only the amounts of two minerals are allowed to

vary, while all other soil parameters such as surface roughness, moisture, etc. are

held constant. The resulting scattergram forms a "soil mineral line" in which the

end points approach the respective reflectances of the pure minerals. The shape
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and orientation of the line may be linear (as drawn) or nonlinear, and are

determined by the location of the end points and the nature of the mixing of the

two mineral types (Smith et al, 1985). Pixels lying between the end points will

contain mineral amounts proportional to their distance along the line.

Scene 2 contains hypothetical pixels in which only soil moisture is allowed to

vary. Soil moisture increases the radiation absorption capacity of the soil in the

visible and near infrared regions. Analysis of published experimental data (Bowers

and Hanks, 1965; Skidmore et al, 1975) indicates that, for many soil types,

equation (3.5) is applicable. Thus the locus of points for Scene 2 pixels should

form a "soil moisture line" as indicated in Figure 3.2 with the pixels along the left

portion of the line containing higher soil moisture than those to the right.

Finally, Scene 3 contains pixels in which only surface roughness varies. Soil

reflectance generally decreases with increased surface roughness due to the increase

in shadow cast by the soil particles and aggregates onto itself (Myers, 1983,

Cierniewski, 1987). The resulting "soil shadow line" is approximately linear with

an intercept of near zero. The linearity occurs since the amount of shadow caused

by the soil aggregates is practically the same for the range of wavelengths being

considered. In fact, a near zero intercept for straight soil lines of real scenes (with

low diffuse radiation) may be an indication that soil shadow induced by its

physical structure is the dominant source of soil reflectance variability.

In actuality, real soil scenes contain a composite of several types of varia-

bility. The corresponding soil line is generally linear in the mean although

considerable scatter can exist (Kauth and Thomas, 1976; Richardson and Wiegand,

1977) A unique soil line will exist only if either 1) one dominant type of soil

variability is occurring or 2) the scatter due to the different types of soil

variability act in the same direction.
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3.5 Empirical Indicators of Vegct_,tion Amount

Numerous vegetation indices have been proposed in recent years as

qualitative indicators of green vegetation. The purpose has been to reduce the

several multispectral bands to one value to estimate vegetation parameters such as

biomass, leaf area index, or percent cover. The relationship among vegetation

indices and the plant physical properties was investigated by Choudhury (1987)

using a two-stream approximation. The effect of soil background reflectance was

examined by Huete (1988). Perry and Lautenschlager (1984) summarize the many

different vegetation indices and describe their relationship to each other. Three

such indices are the normalized vegetation index, the perpendicular vegetation

index, and the Kauth-Thomas Greenness index.

3.5.1 .Normalized Difference Vegetation Index

Of the many indices proposed, the normalized vegetation index (NDVI) has

evolved as a practical popular choice for use in regression with vegetation

parameters. It is of the form

R(NIR) -- R(VIS)

NDVI = R(NIR) + R(VIS) (3.6)

where R(NIR) and R(VIS) represent the pixel reflectances or the digital numbers

(DNs) in the near-infrared and visible (red) ranges, respectively. Low NDVI

indicates low vegetation amount, whereas high NDVI indicates either high

vegetation amount or high productivity (Curran, 1980). Sellers (1985) discussed

the functional relationship between the NDVI and several vegetation parameters,

including the leaf area index. Tucker et al. (1983) correlated the NDVI
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(computed from NOAA's AVHRR data) to actual biomassobtained from field

sampling in a semi-arid region of Senegal,West Africa. The effect of soil

background on NDVIs computed from hand-held or airborne radiometer data was

investigated by Elvidge and Lyon (1985) and Huete et al. (1985).

3.5.2 Perpendicular Veget0_ti0n Index

Richardson and Wiegand (1977) proposed the perpendicular vegetation index

(PVI) as a measure of plant development. Application of this index first requires

the establishment of a background soil line by linear regression of MSS bands 2

and 4 using bare soil pixels. The soil line is thus a straight line stemming from

near the origin. The PVI is the perpendicular distance from the soil line to the

actual data point which contains vegetation, and is defined,

where

PVI = [(Rg2 -Rp2)2 + (Rg 4 -Rp4)2] I/2 (3.7)

Rg2,Rg4 = reflectances of soil background in bands 2 and 4,

respectively, corresponding to the data point.

Rp2,Rp4 = reflectances of data point in bands 2 and 4,

respectively, perpendicular to Rg 2 and Rg 4 on the soil

line.

Richardson and Wiegand (1977) regressed PVI with percent cover of

sorghum with a correlation coefficient of 0.57. Theis et al. (1984) studied the

effect of vegetation and soil moisture on PVI. Rosenthal et al. (1985) recently

used the PVI to investigate crop height and biomass.
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3.5.3 Kauth-Thoma¢ Gr_nnes$ Index

Kauth and Thomas (1976) applied Gram-Schmidt orthogonalization to the

original four Landsat bands resulting in a new four--dimensional space termed

"tasseled cap". The procedure, which is similar to principal components except in

the order of calculations, essentially rotates the data so that most of the

variability can be explained in terms of four indices: greenness (GI), brightness

(BI), yellowness (YI), and nonsuch (NI). The first two of these indices are

defined,

BI = 0.332 DN1 + 0.603 DN2 + 0.676 DN3 + 0.263 DN4 (3.8)

GI =--0.283 DN1 -0.660 DN2 + 0.577 DN3 + 0.388 DN4 (3.9)

where DN1, DN2, DN3, and DN4 represent the digital counts of the three visible

and one near infrared bands of the MSS scanner, respectively. A similar set of

equations has been developed for the Thematic Mapper (Crist, 1983; Crist and

Cicone, 1984).

The Kauth-Thomas Transformation has been used by numerous investigators

to model various crop parameters including crop development, moisture stress,

yield and crop classification (Ezra et al., 1984). Huete et al. (1984, 1985) in a

series of small scale experiments of wooden boxes filled with soil, showed high

correlation of GI with percent cover. Musick (1984), however, using Landsat MSS

data over New Mexico, was unable to achieve consistent differentiation between

arid rangeland cover changes using GI.
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Chapter 4

A STOCHASTIC-GEOMETRIC LANDSURFACE REFLECTANCE MODEL

FOR SATELLITE REMOTE SENSING

This chapter describes a stochastic-geometric landsurface reflectance model

that can be incorporated into the theoretical nadir radiance model described in

Section 2.2.2. The goal is to provide a framework for investigating the conditions

under which subpixel variability is represented in satellite-observed radiance. The

first part of this chapter presents a stochastic canopy-soil reflectance model for

describing regional landsurface variability. The reflectance model is then coupled

to the radiance model through the reflectance term.

4.1 Stochastic--Geometric Canopv-$Qil Reflectance Model

Many semivegetated landscapes are characterized not only by variations in

plant size and density, but also by complex variations in the physical properties

controlling the reflectance of the plant-soil medium. The complexity arises

principally from the highly random nature of many subpixel scale properties of the

plant (e.g. species, plant geometry, leaf area, shape, and orientation) and the soil

(e.g. surface roughness, texture, organic matter content, and moisture content).

Such variations, induced by changes in topography and climate, can have a

significant influence on the interpretation of scenes and therefore must be

recognized when applying canopy reflectance models to regional scale problems.

One approach for accommodating the random subpixel fluctuations in plant

and soil properties, while keeping the number of model parameters to a minimum,
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is to conceptualizethe semivegetatedlandscapeas a stochastic-geometric reflecting

surface. This approach is similar to the geometric models described in Section

3.2.1 in that the landscape is represented by the bulk plant and soil properties

that dominate scene reflectance, that is, fractional cover, plant geometry, and

plant and soil reflectance. However, it extends those models by treating any one

of the bulk properties as a potential random variate. Treating the properties as

random variables provides a flexible means of characterizing the scene without

having to prescribe an inordinate number of detailed vegetation and soil

parameters (e.g., leaf area and orientation, soil roughness, etc.). Such an approach

is practical in many mesoscale hydrologic investigations in which detailed

description of the surface is not necessary, nor is it feasible with current satellite

sensors.

4.1.1 _ and Shadow Geometry

The geometric aspects of the reflectance model include both the plant

geometry and the spatial distribution of the plants. Since the plants are

represented as solid three-dimensional objects, they can cast shadows onto

themselves, onto the soil, and onto adjacent plants, according to their shape and

spatial distribution, and to the solar angle.

The four principal reflecting surfaces of the model are the illuminated green

canopy, the shadowed green canopy, the illuminated soil background, and the

shadowed background. All surfaces are assumed to be Lambertian and scattering

among geometric elements is neglected. The term "soil background" denotes that

the landsurface between the green plants includes not only bare soil, but also a

mixture of sparse grasses and senesced vegetation.
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The geometry of the plant canopy and its shadow is shown in Figure 4.1 for

the particular case of cones. Li and Strahler (1985) has shown that, assuming a

plant diameter D, and height H, the portions of the illuminated plant, Ati , and

shadowed plant, Ats, are respectively,

Ati = [r12- _]D2/4 (4.1)

where

Ats = It/2 + _71D2/4 (4.2)

= sin-l[D/Htan0] (4.3)

Geometric relationships for other shapes, such as cylinders and spheres, are

provided in Section 6.2.3 and Table 6.1.

4.1.2 Refl¢¢t_ce of a Pix_

Depending on its size, an individual pixel can possess any number of plants

and shadows, or fractions of plants and shadows. The total reflectance of an

individual pixel, R(A,x), is assumed to consist of an area weighted linear

combination of the average reflectances of the four landscape components.

Mathematically,

where,

x

Ri(A,x)

R()_,x) = .Z fi(x)Ri()_,x) (4.4)
1

= wavelength,

= spatial coordinate of the center of the pixel,

= average bulk reflectance of cover type i in pixel centered at x.
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fi(x) -- fraction of pixel centered at x possessing the cover type i as

follows

i=l

i=2

i=3

i=4

designates illuminated green vegetation,

designates shadowed green vegetation,

designates illuminated soil background, and,

designates soil background shadowed by green

vegetation.

The percent covers are constrained by,

.E fi(x) - 1
1

(4.5)

Average bulk reflectances and percent covers are defined as follows,

1 IAi(x) ri(A'u)ai(_,_) = _ _ d_
(4.6)

where,

ri(A,u)

Ai(x)

Ap

Ai(x_)

fi(x) =

= reflectance of point t!, given it possesses cover type i,

= total area of the pixel with cover type i, and

= total area of a pixel,

(4.7)

Equations (4.4) through (4.7) are applicable for any pixel in the scene.
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4.1.3 _ and SDectr0J Distrib_ltiqn of Scene Variables

The equations representing total pixel reflectance, (4.4) through (4.7), are

completely general in that they do not specify whether the scene variables are

deterministic or random. The quantities fi(x) and Ri(A,x ) can thus represent

constants, deterministic variables, or random variables depending on the nature of

the scene. For instance, the shape and spatial distribution of agricultural plants

can often be prescribed by a regular geometry, such as rectangular rows. In

natural areas, however, plant height and regional distribution can more

appropriately be represented by random functions as noted in Section 3.3. Plant

and soil reflectance may also be deterministic or random as noted above.

When one or more of the scene variables are random, the reflectance model

takes on a stochastic nature in that the values of fi(x) and Ri(A,x ) can become

correlated in a number of possible ways. For instance, there may exist i) spatial

correlations in plant and soil reflectance, ii) cross-spectral correlations between

plant reflectance and soil reflectance, and iii) cross--correlations between fractional

covers (i.e. vegetation and shadow). Some of those correlations are examined

further in Chapters 6 through 8. The stochastic nature of the reflectance model

thus provides a mechanism for solving the inverse problem as described later in

Chapters 6 and 7.

4.2 Couoled Landsurface-Atmqs0here R,diativ¢ Transfer Model

The landsurface reflectance model described in (4.4) is coupled to the

atmospheric radiance model through the target reflectance parameter, R(A), in the

direct beam equation (2.10), and through the adjacent area reflectance parameter,
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a(A), in the diffuse scattered equation (2.11). For instance, inserting (4.4) into

(2.10) yields,

Lr(A,x) = ._ fi(x)Ri(A,x)E(A)exp[-r(A)]/r (4.8)
l

The diffuse radiance scattered from the surrounding vicinity can be written,

La(A,x) "/'I,-x,t-,<,>/,o,,1]
0

rM(A)PM(A,_)]2r sin_ d_

COS _[rRPR(A,_ )+

(4.9)

where fi(x) represents the average amount of cover type i in the area surrounding

the target pixel located at x, and _(A,x) represents the average reflectance of

cover type i in that same area. The backscattered solar radiance, Ld(A), described

in (2.12), contains no landsurface parameters and is thus unaffected by the nature

of the landscape.

Since the focus of this report is on the landsurface cover, it is useful to

separate the landsurface properties from those of the atmosphere. Equations (4.8)

and (4.9) can be rewritten,

Lr(A,x) - [i_ fi(x)Ri(A,x)]Lr[A,E,r] (4.10)

La(A,_x) = li_ q(_x)ai(A,x)]La[A,E,r,PR,PM,_] (4.11)

where L'r and La' represent the expressions in (2.10) and (2.11), respectively,
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without the reflectance terms. The total radiance observed by the satellite is

thus,

4.3 Eff_t of Subuixel Variability on Observed Radianc¢

Equations (4.10) through (4.12) can be used, at least in a qualitative

manner, to examine the theoretical relationship between fractional cover and

satellite--observed radiance, given the limiting assumptions of both the landscape

reflectance model and atmospheric radiance model. For instance, (4.10) indicates

that the direct beam, the dominant component of the observed radiance for

optically thin atmospheres, is linearly proportional to the amount of the individual

fractional covers of the target pixel (i.e. the fi's). However, that proportionality

does not exist when the adjacency effects of (4.11) are included. The magnitude

of adjacency effects will depend on both the amount of atmospheric scattering and

on the relative contrast between the target pixel reflectance and the surrounding

area reflectance (Otterman and Fraser, 1979).

Since the diffuse terms are small compared to the direct beam for clear skies,

it can be argued from (4.12) that adjacency effects will not be important when the

average reflectance of the surrounding pixels approximately equals the total

reflectance of the target pixel, even though the distribution of ground cover in any

cluster of pixels may differ. In such cases,

R(A,x) _ a(A,x) (4.13)

and the total observed radiance can be expressed,
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(4.14)

Since the satellite data providesobservations in terms of DN values, equation

(4.14) can be rewritten in the form,

(4.15)

where l'r(,k) and I_I(A) are calibration coefficients for a particular horizontally

homogeneousatmosphereand satellite sensor. Further, since one is primarily

interested in the landscapefractional cover, then (4.15) can be expressed,

DN(A,x) = ._fi(x)Ri(A,x ) + l_l(A ) (4.16)
l

where RI(A ) represents an "effective" reflectance, that is, the reflectance of

component i multiplied by the coefficient l'r(A ). Equation (4.16) implies that for

horizontally-homogeneous, optically-thin atmospheres, the satellite observed

radiance is linearly proportional to subpixel fractional cover when the landscape

reflectance does not possess sharp contrasts. That preliminary conclusion has

important implications for the interpretation of scattergrams obtained from

satellite data as discussed later in Chapter 8.
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Chapter 5

SIMULATION OF RED-INFRARED SCATTERGRAMS

OF SEMIVEGETATED LANDSCAPES

One application of the stochastic-geometric canopy reflectance model is the

investigation of the structure, or physical basis, of red-infrared scattergrams of

semivegetated landscapes. That is achieved by using the reflectance model

presented in Section 4.1 with typical values to simulate different scenes, and then

comparing the shape and common features of the corresponding red-infrared

scattergrams. An understanding of the influence of a given random variable is

obtained by altering one of its statistics (e.g., variance), while holding all others

constant.

The following section presents the results of five different simulations in

terms of the nadir reflectance model. Atmospheric effects are not considered and

it is assumed that all areas of the scene are equally illuminated. The input values

of the different reflectance variables are provided in Table 5.1. While those scenes

represent only a few selected scenarios, they were chosen to demonstrate the

important general relationship between the major landscape variables and their

effect on the scattergram.

Scenes are generated as follows. A scene consists of eight segments, each 150

meters square with one meter square grids. Each segment within a scene is

assigned an identical soil background reflectance distribution. Next, trees of fixed

height (3.5 m), represented by square cylinders, are superposed on the soil

background of each segment according to a Poisson distribution having a different

arrival rate for each segment. The area of the canopy (or cylinder) is fixed at
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1 m 2. The shadowed portions of the scene are then determined based on the

geometry of the tree and the solar zenith angle (0 = 30 degrees). Typical values

of soil and vegetation reflectance are assumed (Ross, 1981; Myers, 1983; Smith,

1983) as indicated in Table 5.1. All surfaces are assumed to exhibit Lambertian

properties. A graphical sketch of a typical pixel in the simulated scene is shown

in Figure 5.1.

Once the scene is generated at the 1 meter grid level, it is then aggregated

to pixel sizes of 5, 10, and 30 meters square by averaging the reflectance values of

the components of the grid. A comparison of the pixel scales for the different

levels of aggregation is shown in Figure 5.2. The latter two scales represent

SPOT and Thematic Mapper satellite pixels, respectively. Information regarding

subpixel variables is recorded at each level of aggregation. The computer code for

the generation of scenes is provided in Appendix D.

The simulations are based on the reflectance equations described in (4.4)

through (4.7). To facilitate the explanation of the individual cases, the notation is

changed as follows,

m i = fraction of illuminated vegetation cover in pixel centered at x,

m s = fraction of shadowed vegetation cover in pixel at x_,

gs = fraction of soil shadowed by vegetation cover in pixel at x,

gI = fraction of illuminated soil background in pixel at _x,

Rmi(2,x),_ Rms(,_,x) = average bulk reflectance of illuminated and

Rgi(2,x), Rgs(_,x)

shadowed vegetation, respectively, in band )_, in pixel

centered at x,

= average bulk reflectance of illuminated and

shadowed soil background, respectively, in band )_, in

pixel centered at x.
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The reflectance equation of an individual pixel given in (4.4) can be written

in terms of the new notation as,

R(A,x)= (A,x)+ (A,x)+ + (A,x_) (5.1)
mlRmi msRms - glRgI(A,x) gsRg s

The average bulk reflectances are computed, for example, in the case of soil

reflectance,

(A,_)_(u) (5.2)Rgi(A,_x ) = 1 _ rgI
n

where,

n

rgi(A,u)

_gi(u)

= the number of grids in the pixel centered at x occupied by

illuminated soil,

= illuminated soil reflectance at point l!, and

= delta function equal to 1, if point u is occupied by illuminated

soil, or 0 if it is not.

When the bulk reflectances are not spatially variable, that is, when they are only

a function of wavelength, then for clarity, they will be written without the

coordinate variable x. For example, (A,x) becomes (A) when soil reflectance
- Rg I Rg I

is not spatially variable.

The fractional cover of an individual pixel is defined,

Ag (x)I
gI = A (5.3)

P
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where Agi(X ) is the total area of the pixel occupied by illuminated soil, and Ap

the area of the pixel. Expressionssimilar to (5.2) and (5.3) can be written for

other componentsof the pixel. The total percent canopy cover, m, soil

background, g, and shadow,s, in a pixel are, respectively,

is

where

m = m I + m s (5.4)

g = gI + gs (5.5)

s = m s + gs (5.6)

mI + ms + gI + gs = 1 (5.7)

5.1 Case I - (_onstant Reflectance, NO $hadow_

This case represents an idealized two-component situation in which the

vegetation and soil each have a constant reflectance over the entire scene, and

observations are from the nadir. The sun is near zenith resulting in no shadows in

the field of view. Hence, the only random variable is percent cover. The equation

expressing total reflectance from an individual pixel is taken from equations (5.1)

through (5.7) with m s = gs = 0, or

R(A,x) = mRmi(A ) + (i- m)Rgl(A )
(5.s)

The red-infrared scattergrams for the Case I simulation are shown in Figures

5.3-a,b,c for the levels 5, 10, and 30 aggregation. They indicate that all the data

points fall on a straight line whose end points represent pixels containing the
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maximum (upper left) and minimum (lower right) percent vegetation cover within

the scene. The length of the line decreases with increasing aggregation since the

standard deviation of the canopy density decreases as the pixel size increases. The

percent cover of any pixel lying along the line is proportional to the distance

between the end points.

5.2 Case II -Variable SoilReflectance,No Shadows

In addition to changing vegetation cover, the Case II simulation includes the

effect of spatial variability of soil reflectance. Both small scale (subpixel) and

large scale (regional) variations are incorporated by treating soil reflectance as a

two--dimensional random field with a prescribed covariance structure.

While various functional forms might be applicable, for demonstration

purposes, the Case II simulation assumes that soil reflectance is normally

distributed with an exponential covariance function. It is expressed

cov(d) = a2 exp(-_l) (5.9)

where a2 - the variance of the soil reflectance distribution,

- inverse length scale of the covariance function, and

d = distance between two points in the scene.

The simulated bare soil scene for the red band is shown in Figure 5.4. That

scene, generated using the Turning Bands Method (Mantaglou and Wilson, 1982),

contains a mean reflectance (0.15), standard deviation (0.023), and exponential

covariance. A similar scene (not shown) was generated for the infrared band.
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The mean and standard deviations of both scenes are based on the hypothetical

soil reflectance curve shown in Figure 5.5, which indicates a typical range of

reflectances for a soil with variable properties (e.g., soil moisture or surface

roughness) (Myers, 1983).

The length scale of the exponential covariance function was chosen to be 20

meters. While that might represent some geophysical scale, for the present case,

it was chosen for convenience. It is much larger than the grid scale of one meter,

and the two smaller aggregations (5 and 10 meters), but smaller than the largest

aggregation (30 meters). Thus, the choice of that scale allows one to examine the

relation between covariance length scale and pixel size.

The total reflectance from a given pixel in the Case II simulation is,

R(A,x) = mRml(A ) + (I -m)Rgl(A,x ) (5.10)

The results of the Case II simulation for all three aggregations are shown in

Figures 5.6-a,b,c. (Regular spaces in the scattergrams, especially at lower level

aggregations, are due to finite increments in percent cover as limited by the level

of aggregation. This effect occurs in subsequent cases as well.) They indicate

that the red-infrared scattergram tends to take on the characteristic shape of a

triangle. The top of the triangle represents full canopy cover, and the base

represents the minimum vegetation cover in the scene. For areas in which it can

be assumed that bare soil exists, the base of the triangle represents the classic

"soil line."

While Case II is still a relatively simple example, it demonstrates the

usefulness of the scattergram for explaining subpixel variability. For instance, all
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pixels falling on a line parallel to the soil line will have the same percent

vegetation. A second observation is that all pixels falling on a straight line

extending from the top of the triangle to the soil line will have the same value of

average soil reflectance. The above interpretations of the scattergram are

indicated on Figure 5.7 (an expanded version of 5.6b) for the level 10 aggregation.

The importance of pixel scale relative to the covariance function is seen in

the size of the triangles at different levels of aggregation. The scattergrams

indicate that the length of the soil line and, hence, the width of the triangle

decrease with increasing aggregation. Both the standard deviation and the

covariance length scale contribute to that effect. Since scenes composed of large

pixels average over a greater area than scenes with small pixels, statistically, one

can expect the former case to have a lower standard deviation. However, that

effect is mitigated by the covariance length scale. Scenes with small length scales

(relative to pixel size) will exhibit short soil lines, while scenes with large length

scales will exhibit long soil lines.

5.3 Case III- Variable V_etation Reflectance. NO Shadows

In addition to variable percent cover and variable soil reflectance, the Case

III simulation introduces variable vegetation reflectance and examines its effect on

the red-infrared scattergram. Vegetation reflectance will change at small and

large spatial scales due to variations in a number of plant parameters, including

plant species, leaf reflectance, growth stage, plant architecture, leaf orientation and

distribution, leaf area, and plant stress (Ross, 1981). Regional scale variations in

the pattern of natural vegetation and dominant species are influenced by elevation,

gradient, and local climate (Whittaker, 1975).
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As for soil, Case III treats the variation in vegetation reflectance as a

normally distributed random variable with an exponential covariance structure. It

further assumes that reflectances in the infrared and red bands are linearly related

with negative slope. That relationship is not intended to represent all types of

vegetation variability, but may be a simple approximation for some cases. For

instance, increases in leaf area are generally associated with decreases in red

reflectance and increases in infrared reflectance (see for example, Colwell, 1974;

Hall, 1984).

For Case III, the total reflectance of a given pixel becomes

R(A,x) = mRmi(A,x ) + (1- m)Rgi(A,x ) (5.11)

where the three random variables are percent cover (m), vegetation reflectance

(Rmi) and soil reflectance (Rgi).

The scattergram for Case III is presented in Figures 5.8-a,b,c for all levels of

aggregation. The difference from Case II is that the top of the triangle has spread

open, resulting in a quadrilateral data plot. An envelope curve along the top of

the quadrilateral represents pixels of maximum vegetation cover. For scenes

containing full canopy cover, that locus of points can be considered the "canopy

line" analogous to the soil line at the base of the quadrilateral.

It is noted that for all three non shadowed cases (I, II, and III), neither

plant geometry nor spatial distribution play a role in the shape of the scattergram

or the relative location of a given pixel. Similar scattergrams could have been

achieved using any plant geometry (e.g., spheres or cones) or spatial distribution

(e.g., row crops with any orientation) as long as the distribution of the

reflectances and the percentage of vegetation cover were the same.
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5.4 (_ase IV - $hadowe(;t Soil Background, Constant Vegetation _nd Soil

Reflectance

Shadows cast by vegetation can be an important component of total pixel

reflectance. Shadows change diurnally with the position of the sun and with the

amount of diffuse solar radiation. Important seasonal changes occur both with the

sun's migration and with changes in plant structure.

Case IV examines the effect of shadows cast by plants on soil. The solar

and view angles are arbitrarily assumed to be 30" and 0", respectively, and the

reflectances are constant. The reflectance equation for a given pixel is

R(A) = mRmi(A ) + giRgi(A ) + gsRgs(A ) (5.12)

The scattergrams associated with the three aggregation levelsfor the Case

IV simulation are shown in Figures 5.9-a,b,c. They reveal several interesting

relationsamong percent cover and shadow, the level of aggregation, and the

characteristicshape of the scattergram.

All the data pairs fallwithin a space defined by a triangle. This is

illustratedusing the level 5 aggregation as indicated in Figure 5.10 (an expanded

version of 5.9a). The verticesof the triangle (labeled Points B, C, and D)

correspond to the assumed pure spectra of the fullshadow (reflectance= 0.0), full

canopy, and pure soil,respectively,as indicated in Table 5.1.

Since pixelslocated within the triangle are linearmixtures of the three cover

types, the exact percentage of any cover type can be determined on the basis of

its location in the scattergram. For instance, the percent covers for an arbitrary

pixel A shown on Figure 5.10 can be determined graphically _ follows. First,
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lines EF and GH are drawn through pixel A parallel to CD and BD, respectively.

It is then noted that line EF is located about one-third of the distance between

the line CD and point B. That indicates that pixel A contains 33 percent shadow.

Line GH is situated about one-fourth the distance between the line BD and point

C, indicating that pixel A has 25 percent vegetation cover. The remaining cover,

42 percent, is bare soil, which can be checked on the basis of pixel A's location

between line BC and point D.

The above determination of the three cover types is simply a graphical

illustration of an analytical solution applicable within the limits of the Case IV

assumptions. It can be applied to any level of aggregation. The solution could

also be achieved algebraically using equation (5.12) for both wavelengths (two

equations) and equation (5.7).

The Case IV scattergrams also reveal an important relation between shadow

length scale and pixel size. For instance, at the level 5 aggregation, since the

length scale of the shadow is about the same as the pixel scale, there are

numerous instances when the shadow of a tree in one pixel falls onto an adjacent

pixel. The three components of the pixel (vegetation, shadowed soil and

illuminated soil) are independent of each other in a majority of cases. As a result,

pixels can occupy almost any space within the limits of the triangular scattergram

given a large enough sample size.

As the level of aggregation increases, however, the length scale of the

shadows becomes much smaller than the size of the pixel. As a result, shadows

associated with a given tree fall increasingly within the same pixel and the amount

of ground shadow becomes more and more correlated with the amount of

vegetation cover. Mathematically, a covariance is generated among the three

cover variables for the higher levels of aggregation which can be expressed,
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gs = gs (m)

gI = gI (m) = 1-m-gs(m)

(5.13)

(5.14)

and equation (5.12) becomes

R(A) = R[A, m, gl(m), gs(m)] (5.15)

A major consequence of the above relations is that it reduces the feasible

region in the scattergram. Even at the level 5 aggregation (Figure 5.9a), that

effect is manifested as a slight indentation in the upper right hand side of the

triangular scattergram. At higher levels of aggregation, Equation (5.15) implies

that there is only one position in the scattergram associated with a given canopy

cover. As a result, one should expect the triangular scattergram observed at the

level 5 aggregation to collapse to a single curved line when the shadow length

scale becomes small relative to the pixel size. That is indeed shown to be true in

a progressive manner by examining the sequential shapes of the scattergrams in

Figure 5.9b (level 10 aggregation) and Figure 5.9c (level 30 aggregation).

5.5 Case V - Shadowed Soil Background, Variable Soil Reflectance

Case V is a more realistic version of the shadow model in which soil

reflectance is assumed normally distributed as in Case II. The governing equation

for an individual pixel is
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R(A,x) = mRmi(A) + glRgi(A,x) + gsRgs(A) (5.16)

The resulting scattergrams for the different levels of aggregation are shown in

Figure 5.11.

The scattergrams of the Case V simulation represent a combination of the

effects illustrated in Case II (constant vegetation reflectance, variable soil

reflectance) and Case IV (shadow effects).

For instance, the scattergram of the level 5 aggregation, Figure 5.11a,

exhibits a triangular shape overall, but with a pronounced indentation in the

upper right portion due to the shadow effects. It can be regarded as a

superposition of many triangular scattergrams, each for a homogeneous soil

(constant background reflectance), similar to that of Case IV, level 5 aggregation

(Figure 5.10). That is illustrated in Figure 5.12 (expanded version of 5.11a).

Those triangles share two common vertices at 1) the point of pure shadow

reflectance (point B), and 2) the point of pure vegetation reflectance (point C).

The third vertex (labeled D1, D2, D3, ... etc.) is unique for each triangle,

representing the reflectivity of a particular soil which is homogeneous at that

aggregation. The collection of all vertices, D, constitutes the true soil line.

In the particular example shown, the true soil line has an intercept greater

than zero, and is thus situated slightly inside the boundaries of the overall

scattergram, as indicated in Figure 5.12. It is also possible, however, that the

shadowed soil reflectance lies above the soil line. Only in such cases will the

bottom of the scattergram accurately represent the true soil line.

An important consequence of the level 5 aggregation is that pixels containing

different mixtures of vegetation, shadow, and variable soil can occupy the same

ff-.
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location in the scattergram. As a result, the percent cover of individual pixels can

not be determined explicitly as shown in previous examples.

The scattergrams of the levels 10 and 30 aggregation are shown in Figures

5.11b and 5.11c, respectively. As in CaseIV, becauseof the unique relation

betweenshadow and vegetation cover at this scale, the scattergrams collapse

progressively to the shapeof a "tasseled cap" (Kauth and Thomas, 1976). At the

level 30 aggregation, the scattergram consists of a series of juxtaposed curved

lines, each line possessing constant average soil reflectivity (similar to Case IV,

level 30 aggregation, Figure 5.9c), extending from individual points on the true

soil line to the tip of the tasseled cap. That is illustrated in Figure 5.13

(expanded version of 5.11c).

Unlike the level 5 aggregation, percent cover can be estimated for Case V,

level 30 aggregation, in a manner similar to Cases II and IV. Percent cover is

proportional to the distance between the soil line and the tip of the tasseled cap.
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Chapter 6

REFLECTANCE AND COVER MOMENTS

This chapter describes various moment equations applicable to the solution

of the inverse problem described in Chapter 7. The moments include the mean,

variance, cross--spectral covariance, and the spatial covariance of the reflectance

equation. Conditional moments are formulated for portions of the scene where the

pixels are assumed to possess one or more similar attributes, and which can be

identified through ones knowledge of the scattergram. The geometric similarity

and scaling criterion necessary for the application of the conditional moment

equations are developed. A sampling scale ratio is developed as a quantitative

scaling criterion to test when the fractional covers are functionally related.

6.1 General Moment Eouations

When one or more of the terms of the reflectance model are considered

random, then the moments of both (4.4) and (4.5) can be expressed in terms of

the moments of the individual variates. Such expansions can be achieved by

applying fundamental properties of random functions without prescribing the

probability density functions of the variates. For instance, if one assumes i) all

the terms of equation (4.4) to be random, ii) that the reflectance terms are

statistically independent of the percent cover terms, refiectances of different cover

types are statistically independent, a general set of moment equations as presented

below can be obtained. The mathematical details and the assumptions underlying

the moment equations are provided in Appendix C.
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The expected value, or mean pixel reflectance is

E[R(A,x)] = Z E[fi(x)]E[Ri(A,x)]
i

(6.1)

where E[] designates the expected value. The variance of equation (4.4) can be

written,

VAR[R(A,x))] = E {E[fi(x)12VAR[Ri(A,x_)I +
I

+ VAR[fi(x) ] VAR[Ri(A,x)] }

E[Ri(A,x)] 2 VhR[fi(x) ]

+ E E E[Ri(A,x) ] E[Ri(A,x)]Cov[fi_),fi(x)] (6.2)

i#j

where cov[fi_),fj(x) ] represents the covariance between cover type i and j in a

given pixel. The summations in (6.1) and (6.2) occur over the four cover types.

The cross spectral covariance of the reflectance between the two bands, A1 and A2,

for a given pixel is written,

Cov[R(AI,X),R(A 2,x)] = Z. {E[fi(x_.)]2COV[Ri(Al,X),Ri(A2,x)]
!

+ VAR[fi(x_)]E[Ri(Al,X)] E[Ri(A2,x-)]}

+
Z r, E[Ri(AI,x)]E[Rj(A2,x)] COV[fi(_),fj(x) ]
itj

(6.3)

Similarly, the spatial covaxiance of the total reflectance between any two pixels in

one band is,
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COVx[R(A,x), R(A,x')] = .Z Z.{[ _.- J- +E[fi(x)] _, J cov..[f,(x),f,(x')l Etf_(x')l] •

., , _ J _ E[Ri(A,x)] E[Rj(COVv[R,()_,x),R:(A,x')] + A,x')]]

- E[fi(x)] E[fj(x')] E[Ri(_,x)] E[Rj()_,x')]}

(6.4)

where x = (Xl,X2) and x' = (x_,_x,_) represent two separate locations in the image

and COVx[Ri()_,x),Rj()_,x')] equals zero (by assumption) except for i = j.

The relationship among the moments of the cover variates can be established

using equation (4.5). Those quantities are not assumed to be statistically

independent but are related by the geometry and spatial distribution of the plants.

The expected value is,

r_ E[fi(x)] = 1 (6.5)
i

and the variance is,

r_ VAR[fi(x)]+ r, r_ cov[fi(x),fj(x)]= 0 (6.6)
i i#j

Equations (6.1) through (6.6) constitute at least six moment equations

which, theoretically, can be augmented if more than one wavelength is used. For

instance, equations (6.1), (6.2) and (6.4) each represent two equations when

written for both the red and infrared bands. The actual number of moment

equations depends on several factors, including the nature of the scene, the number

of random variables in the model, and the linear independence of the moment

equations at different wavelengths.
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6.2 Conc_itipn0.1 Reflectance _nd Cover Mom(_nts

In some instances, conditional moments can be written for a portion of the

pixels that possesses similar attributes. Examples include pixels possessing only

bare soil, equal amounts of vegetation cover, or the same probability distribution

describing plant spacing. The formulation of conditional moments for those cases

generally reduces the complexity of the analysis provided that the appropriate set

of pixels can be identified.

One approach for identifying a set of pixels with common attributes is

through the interpretation of multidimensional scattergrams. The previous chapter

demonstrated, through the use of simulated images, that the structure of

semivegetated scenes manifests itself in the structure of red-infrared scattergrams.

That knowledge of the structure of scattergrams provides a mechanism for

identifying sets of pixels, not necessarily located within the same segment of the

scene, for which conditional moments can be formulated.

6.2.1 $9il Line Conditional Mgm_nts

A relatively simple example of conditional moments is for the case of bare

soil pixels. For many semivegetated scenes, bare soil pixels orient themselves

along a preferred "soil line" at the base of triangular red-infrared scattergrams as

described in Section 3.4, or,

RgI(AIR , x) = a RgI(ARED,X ) + 3'

where a is the slope and 7 the intercept. In terms of equation (5.7), the only

fractional cover type is bare soil, or

(6.7)

gI = 1 (6.8)
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By conditioning the mean and variance of the reflectance equations (6.1 and 6.2)

along the soil line, then,

E[R(A,x)lg I = 1] = E[RgI(A,x)] (6.9)

VAR[R(A,x_)]g I = 1] = VAR[RgI(A,x)] (6.10)

resulting in two additional conditional moment equations for a given wavelength.

The soil reflectance moments are related by,

E[RgI(AIR,X)]- a E[RgI(ARED,X)]+ 7

VAR[RgI(AIR,X)]-- Ct2 E[RgI(,kttED,X)]

(6.11)

(6.12)

6.2.2 Cover MQments for Statistically Homogeneous Svatial Distributions

In many natural semivegetated regions, the spatial distribution of vegetation

follows particular patterns which can be analytically prescribed. The statistical

analysis of such spatial patterns in botany, with emphasis on coniferous

vegetation, is well documented (Diggle, 1983). Knowledge of those distributions

can be useful for relating the cover moments to the spatial distribution and

geometry of the vegetation elements.

One example is when a portion of the scene contains plants which can be

assumed to follow a Poisson distribution in space. The mean of the fraction of

illuminated vegetation for that segment of the scene can be written,

E[mlPoisson ] = 1 - exp[-p(A t + AS) ] (6.13)
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where p is the Poisson spatial density, A t is the average area of one plant canopy,

As is the average area of the shadow cast by one canopy on the soil. The

variance of the fraction of illuminated vegetation can be obtained in terms of m

from the coverage problem derived empirically by Garwood (1947), or

0.5

VAR[mlPoisson] = [m 2 [{1-'_}m -At/Ap - 1] +'_] (6.14)

where A t is the average area of the plant, Ap is the area of the pixel, and

k = (At/Ap) 1"5. A graphical solution of (6.14) is provided in Figure 7.3 for the

Case V simulation, level 10 aggregation, presented in Chapter 5.

6.2.3 Geometric Simil_trity

Many semivegetated landscapes possess only a few dominant species whose

shapes can be represented by simple geometric figures, such as cylinders, cones, or

spheres. The plants can be of different heights or sizes reflecting different stages

of growth. In order to parameterize such shapes with a minimum number of

variables, it is useful to assume that they are geometrically similar. Geometric

similarity, employed in that sense, implies that the ratio of the plant height to

some canopy width scale is a constant regardless of the size of the plant. In the

case of conifer trees represented by cones, Li and Strahler (1985) assumed that the

apex angle was constant. That assumption can be generalized to other geometric

shapes as well. For instance, the similarity parameter of cylinders is the aspect

ratio, b, defined as the ratio of the mean width, D, to mean height, H. For

spheres, no similarity parameter is required, as the ratio of height to width is

unity.
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The geometric similarity assumption can be extended to include the solar

angle, and thus, becomes particularly useful for establishing the analytical

relationship between canopy area and shadowed area for different spatial

arrangements. When no overlapping effects are considered, the shape of the

plant's shadow is dictated precisely by the geometry of the plant itself and the

solar zenith angle, 0.

area, A t, or,

By defining r/as the ratio of shadowed area, A S, to plant

77 = As/A t (6.15)

then for example, for square cylinders,

tan0 (6.16)= %---

Similarity parameters and corresponding _'s for different geometric shapes are

provided in Table 6.1. A graphical illustration of geometric similarity in the case

of cones is presented in Figure 6.1.

The practical advantage of defining 77is that it allows one to absorb all the

geometric factors which relate canopy area to shadowed area into only one

variable. Consequently, the landscape can often be parameterized without the

limitation of having to specify cones, cylinders or another geometric shape.

As the vegetation density or the solar zenith angle increases, the shadow cast

by one plant can extend far enough to be overlapped by the canopy of an adjacent

plant. In such cases the amount of shadow is a function of the spatial distribution

of the plants as well as of their geometry. Shadowing can occur when the plants

are arranged in homogeneous deterministic spatial distributions, such as for row

crops or orchards, or in stochastic distributions, as for natural vegetation.
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Table 6.1

Similarity of Canopy Geometry

Canopy
Shape

Geometric
Similarity
Parameter

Solar--Geometric

Similarity Parameter

7/ = As/A t

i) Circular

Cylinders

b = D/H 4 tan07r 5

ii) Square

Cylinders

b = D/H tan0-g-

iii) Cone ¢ -- tan-l(D/H) (cot X- _ + X)/7r

iv) Sphere none tan0 sin0

where D = mean canopy width
H = mean canopy height
0 = solar zenith an_le

sinl(tan¢/tan#)
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For random spatial distributions, the relationship among cover types is more

conveniently expressed in terms of their expected values. For example, in the

particular case of Poisson distributed plants, equations (6.5), (6.13) and (6.15) can

be combined to yield,

E[gi] = {l-Elm]} r/+l (6.17)

The derivation of equation (6.17) is provided in Appendix C.

6.2.4 Conditional Moments for Pixels with Constant Vegetation Cover

The soil line moment equations are, in fact, a special case of the conditional

moments for pixels of constant vegetation cover. For example, it was empirically

shown in Section 5.4 that when i) the only variables in the scene are the

fractional covers (vegetation, shadow, and illuminated soil) and soil background

reflectance, and ii) a unique functional relationship exists among the different

cover types of the form

gI = gI(m'gs ) (6.18)

then all pixels falling on a line parallel to the soil line possess equal amounts of

vegetation cover. However, the distance of that line from the soil line was not

linearly proportional to the amount of vegetation, but depended on the amount of

vegetation and shadow, and the magnitude of the reflectances.

Along each parallel line, since m, gI' and gs are constant, the conditional

mean and variance of the reflectance equations given in (6.1) and (6.2) become,

respectively,
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E[R(A,x)Im]_ = mRm(A ) + gsRgs(A) + glE[Rg I(A,x)] (6.19)

2 VAR[RgI(A,x) ] (6.20)VAR[R(A'x) Im] = gl

The above formulation does not include the possible covariance between the soil

reflectance and the amount of vegetation cover. Realistically, vegetation detritus

changes soil reflectance by altering its organic and moisture content, and the

resulting covariance must be considered in a more detailed analysis.

6.2.5 Sampling Scale Ratio

It is useful to develop a quantitative scaling criterion to test when the

fractional covers are functionally related as in (6.18). One approach is to examine

the relative scales of the shadow, as determined by the plant geometry and solar

angle, and that of the pixel as determined by the field of view and altitude of the

sensor. For instance, it can be reasoned based on the Case IV simulations, that as

the scale of aggregation increases relative to the scale of the shadow, then, for

homogeneous regions, a correlation develops among the different cover types.

That correlation occurs since the variance in shadow cover is inversely

proportional to pixel size. For very large pixels, the variance becomes so small

that the fractional covers of each pixel approach the functional relationship in

(6.18). The exact relationship depends on the geometry and spatial distribution of

the plants, the solar angle, and the sensor characteristics.

The above reasoning can be examined quantitatively by comparing order of

magnitude estimates of the standard deviation (square root of variance) in shadow

and the amount of canopy cover as a function of canopy geometry and pixel size.
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For instance, in order for (6.18) to exist, one criterion that must betrue is

E[m] >> w,R[gs]l/2 (6.21)

From (6.6), (6.14), and (6.15) it can be shown empirically that

VAR[gs ]1/2 r/At (6.22)

Thus, by combining (6.21) and (6.22), and noting that m is of the order of

magnitude 10 "1, a sampling scale ratio for Poisson distributions, Sp, can be

obtained of the form

A

Sp = _ >> 10 (6.23)

For Sp >> 10, equation (6.18) is valid. When vegetation reflectances are also

constant, then (6.19) and (6.20) can serve as approximations for the more complex

expressions (6.1) and (6.2). For homogeneous Poisson distributions, large Sp

implies that the partition of fractional covers in any given pixel approaches the

mean relationship in (6.17), or

gI -_ (1 - m) r/+l (6.24)

For regular geometric (non--statistical) spacings, variability in gs occurs

when the shadow associated with a given plant falls on a different pixel than that

in which the plant is located. That situation is likely to occur when the scale of

the plant is about the same or greater than the scale of the pixel. One criterion

that avoids that situation is,

Ap >> r/A t (6.25)
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The sampling scale ratio for regular geometries is thus,

A

S G = _--_t >> 1

The importance of (6.23), (6.24) and (6.26) for the inverse problem will be

demonstrated in Chapters 7 and 8.

(6.26)

6.3 Momcnt_ of Satellit_ Observ¢d Radiance

It is useful to write the moments of the coupled landsurface-atmosphere

radiation equations provided in Section 4.2 in order to examine the influence of

the diffuse scattering terms on the moment equations. For instance, assuming

horizontally homogeneous atmospheric conditions, the expected value of the

satellite observed radiance given in equation (4.12) is

E[L(A,x)] = [iZ E[fi(x)]E[Ri(A,x)]]L'r(A)+ [iE E[fi(x)]E[ai(A,x)]lLa(A)+ Ld(A)

(6.27)

where the L' values, defined in Section 4.2, are treated as constants for a given

wavelength. The variance of (4.12) can be written

• _i

+ 2L :(A )L '_(A)COV [[_ fi(x)ai( A,x)], [E f] (x)ai( A,x)]]
• '_ Li - - i

(6.2s)
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where, for simplicity, the summed terms have not been expanded as in (6.2) and

(6.3). Equations (6.27) and (6.28) indicate that the atmospheric scattered diffuse

radiance, Ld(A ), adds a constant term to the mean equation and has no influence

on the variance. However, the diffuse radiance caused by adjacency effects can be

significant, especially with regard to the variance, due to the introduction of

cross-covariance terms. When the assumption that the surrounding area and

target pixel reflectances are approximately equal, as given in (4.13), then the

moments become

E[L(A,x)]--[i_E[fi(x)]E[Ri(A,x)]]Lr(A) + Ld(A )
(6.29)

VAR[L(A,x)] = L'r2(A)VAR[Z fi(x_)Ri(X,x)] (6.30)

In terms of the DN values recorded by the satellite,

E[DN(A,x)] = _E[fi(x)]E[Ri(A,x)] + I_(A) (6.31)
i

where RI(A,x ) is the effective component reflectance defined in Section 4.3. Thus,

it is shown that for regions of low interpixel contrast, the moment equations for

the observed radiance, (6.31) and (6.32), are very similar in form to those of the

target reflectance defined in Sections 6.1 and 6.2. That conclusion is valid only

within the assumptions of the radiance model for optically thin atmospheres

provided earlier.
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Chapter 7

GENERAL INVERSE PROBLEM:

ESTIMATION OF SUBPIXEL PARAMETERS

In most remote sensing applications, only the spatially integrated

multispectral observations are available, with limited knowledge concerning the

physical structure of the scene. That is especially true in natural areas where

ground truth (e.g. training samples or spectral signatures) is not regularly

obtained.

The following sections present an approach for estimating the bulk physical

parameters of the scene, with emphasis on subpixel vegetation cover, using the

method of moments in the red and infrared bands. The method consists of

equating the theoretical moments derived above for the two bands to the sample

moments of the red and infrared images, and solving for the unknown parameters.

Several versions of the method are possible depending on the nature of the

scene. In this chapter, the method is applied to two simulation cases presented in

Chapter 5. Inversion is first applied to Case II as an introduction to the method

on a relatively simple scene, without shadows, in which the Sampling Scale ratio

for Poisson distributions, Sp, is zero. The inverse procedure is then applied to

two different aggregations of the same landscape simulated in Case V. Different

versions of the inverse procedure are used on each aggregation of Case V, as a

direct consequence of the change in value of the Sampling Scale Ratio with pixel

size.

The simulated images are analyzed primarily as a theoretical demonstration

of the method for scenes in which the surface parameters are well known and can
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be controlled. The analysis shows to what extent subpixel parameters, evidently

lost through the aggregation process, can be retrieved.

7.1 Inversion of Case II

The parameters of the Case II image can be retrieved by employing the

conditional moment equations to sets of pixels which possess similar attributes, as

identified in the scattergram. More than one approach is possible, depending on

which parameters are desired. This section demonstrates a version applicable for

estimating the fractional vegetation cover on a pixel by pixel basis. The approach

uses the knowledge that the sampling scale ratio, Sp, is very large, since in the

case of no shadows, equation (6.15) yields r/= 0 and equation (6.23) yields

Sp = ®. It also takes advantage of the knowledge that pixels of constant

vegetation cover lie parallel to the soil line. Once a set of pixels has been

identified, the solution can be obtained by writing conditional moments along

those lines using either band.

The solution procedure is first, to locate the soil line in the scattergram, and

then to calculate the sample mean and variance of those pixels. Equating those

sample moments to the theoretical conditional moments of the soil line, equations

(6.9) and (6.10), provides a direct estimate of the mean and variance of the soil

reflectance at that scale. Next, a narrow band of pixels lying at an arbitrary

distance from the soil line, but parallel to the soil line, is chosen and the sample

moments of those pixels are calculated. The fractional vegetation cover of pixels

in that band is estimated by equating the sample variances to the theoretical

variances, and using (6.20) rewritten for Case II in which m = 1 - gI' or

m = 1 - [VAR[R(A,x)Iml/VhR[Rgi(A,x)]] 1/2 (7.1)
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By choosing another parallel line at a different distance from the soil line, another

estimate of m can be obtained for a new set of pixels. The procedure is repeated

until the desired number of pixels has been analyzed. The computer code for the

solution of the inverse problem for Case II is provided in Appendix D.

The vegetation reflectance can be retrieved although it is not a prerequisite

to estimate m.

gs -- 0, or

It is obtained by rewriting (6.19) specifically for Case II in which

Rm(A ) = {E[R(A,x)lm ] -E[Rgi(A,x)]}/m + E[Rgi(A,x)] (7.2)

The results of the Case II analysis using either the red or infrared band are

shown in Figure 7.1 and Table 7.1. Figure 7.1 contains a plot of the estimated

values of m versus the simulated values of each pixel in seven different parallel

lines. The results indicate excellent retrieval for most values of m, with a

standard deviation of error, s, equal to 0.026 for calculations using the red band

and 0.028 for calculations using the IR band. The estimated reflectances also

agree closely with the actual values for all values of m as can be seen in Table 7.1

for one arbitrary line at which m equals 40 percent.

It is noted that the above estimates of vegetation cover are made without

introducing any assumptions on the geometry or spatial distribution of the trees.

It is further noted that the variance of the soil reflectance computed above

represents the variance of the aggregated process. The variance of the point

process can be retrieved by applying the appropriate variance function to the

results obtained at the aggregated level (Vanmarcke, 1983).

For homogeneous regions, the spatial correlation function of soil reflectance

can also be retrieved using the covariance equation (6.4) which, in Case II, reduces

to,
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Table 7.1
Comparison of Simulated and Estimated Scene Parameters

Cases II and V, m = 0.40

Parameter

Reflectance Parameters

CASE II

Simulated Estimated Simulated

Units Value Value Value

CASE V

Estimated Values

Method 1 Method 2

Rm(ARED) % 15.0 15.7 15.0 22.2 14.8

Rm(AIR) % 40.0 40.6 40.0 51.3 39.8

R % 0.0 0.0f 0.0f
gs(ARED ) ........

ags()_m) % ........ o.o o.oi o.of

E[RgI(_RED) ] % 15.0 15.0 15.0 15.3 15.3

E[RgI(AIR) ] % 20.0 20.0 20.0 20.3 20.3

VAR[RgI(,_RED)], level 10 %2 4.8 5.3 4.8 3.3 ...

VAR[RgI(ARED)], level 30 %2 ........ 3.0 .... 3.0

VAR[RgI(AIR)] , level 10 %2 4.8 5.3 4.8 3.3 ....

VAR[RgI(AIR)] , level 30 %2 ........ 3.0 .... 3.0

Geometric Parameters

2
m

m 20.0

%

1.0 .... 1.0 0.85 ....

0.0 .... 2.0 2.2 2.0

co 50 450

21.0

RgI(AIR ) = 1.0 RgI(ARED)

Canopy Area, A
t

Similarity Parameter, 77

Sampling Scale Ratio, S

Soil Line Parameters

Spatial Correlation

Length Scale

Soil Line Equation

J'Assumed value

+ 5.0

120



COVx[R (A,x),R(A,x')]
- [E[gi]2+ VAR[m]] COVx[Rgi(A,x),Rgi(A,x,)]

+ VAR[m] [Rm(A)- E[RgI(A,_x)I] 2

Two steps are required. First, the sample spatial covariance of soil

V
reflectance, CO x[Rgi(A,x),Rgi(A,x )], must be determined by computing (7.3) at

different lags, x -x'. The sample spatial correlation function is then obtained

from

OOVx[Rg'
PRgI (A)(x - x') -- VAR [Rgi(A,x)]

(7.3)

(7.4)

to which an appropriate function can be fitted if an analytical relationship is

desired.

The correlation function for Case II was estimated by applying the above

procedure to the eight different segments (representing eight values of m) of the

red and infrared scenes. The results are shown in Figure 7.2 and Table 7.2.

Figure 7.2 shows a comparison of i) the sample correlation of the simulated bare

soil reflectance in the red band at the 10-meter level of resolution and ii) the

estimated soil reflectance correlations using (7.3) and (7.4) for a range of m's (14,

40, and 57%) at lags of 10, 20, 30 and 40 meters. The good agreement between

the simulated and estimated correlations, as indicated in Figure 7.2, was typical

for all values of m in the red band, but poor for the IR band for m greater than

about 50%.

The estimated soil reflectance length scales for each value of m, assuming an

exponential correlation, are shown in Table 7.2 for both the red and infrared

bands. Overall, the estimated values compare favorably with the actual simulated
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Fractional

Canopy
Cover

Table 7.2

Estimated Soil Reflectance Length Scale

Level 10 Aggregation

Simulated Length Scale = 20 m

Case II Case V
IR RED IR RED

(m) (m) (m) (m)

0.05 20.6 21.4 21.2 20.7

0.14 16.8 21.3 18.4 20.5

0.26 22.5 21.0 12.3 13.7

0.39 18.4 21.0 -- 14.9

0.51 20.0 21.3 -- --

0.52 12.2 21.2 -- --

0.63 11.3 21.07 -- --

0.78 18.3 20.3 -- --
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value (20 m), although the agreement is better for the red band. In the infrared

band, the length scales are not retrieved as well at higher values of m. That is

due to the greater difference in the reflectances of the vegetation and soil in the

IR band, as compared to the red band.

7.2 Inversion of Case V

For the Case V simulation, equation (6.16) yields 77= 2.0. Two different

approaches are presented for estimating the Case V parameters, depending on the

magnitude of the sampling scale ratio, Sp, defined in (6.23). A first approach

(Method 1), applicable for all ranges of Sp, consists of solving the full set of

moment equations simultaneously for different statistically homogeneous regions.

The second procedure (Method 2), applicable only for large Sp in which (6.18) is

true, utilizes a simpler approximate set of moment equations and one's knowledge

of the structure of the scattergram.

7.2.1 Estimation 0f Parameters, Method l: $_ :_:_ 10

The introduction of shadows in Case V adds to the complexity of inverse

problem in several ways. First, it increases the number of cover types to three

(e.g., illuminated canopy, illuminated soil background, and shadowed soil

background) as well as the number of associated reflectance terms in both bands.

Additionally, the covariance among the three cover types must be considered in

the analysis.

At the level 10 aggregation, the sampling scale ratio, Sp, is only _ :_$ 10.

Since (6.24) is not valid for such small Sp, pixels with different amounts of

vegetation cover can occupy the same location in the scattergram, previously

shown in Figure 5.9b. The assumption of constant canopy cover for pixels
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oriented parallel to the soil line does not apply (except for the soil line itself in

which m = 0). Thus, unlike Case II, subsets of pixels required for the analysis

can not be identified on the basis of the scattergram.

When segments of the scene can be assumed statistically homogeneous,

however, the following conditional moments can be written for the set of pixels

located in each region. The mean reflectance equation is,

E[R(A,_x)] = E[m]Rm(A) + E[gs]Rgs(2) + E[gI]E[RgI(A,x) ] (7.5)

The variance equation now includes the variances and covariances of the individual

cover types, or

VAR[R(A,x) ]
= E[gl]2VAR[RgI(A,x) ]+ Rm(A)2VAR[m] + E[RgI(A,x)]2VAR[gl]

+ VAR[gl]VAR[RgI(A,x)] + RgS(A)2VAR[gs]- 2Rm(A)E[RgI(A,x_)] •

VAR[m] + COV[m,gs] } + 2Rm(A)Rgs(A ) Cov[m,gs]

- 2E[RgI(A,x)] Rg_(A){VAR[gS] + COV[m,gs] } (7.6)

The cross covariance between any two spectral bands is written,
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COV[R(ARED,X),R (AIR,x)] - VAR[m] R m(ARED)Rm(AIR)

+ E[g2IICOV[RgI(ARED,X),RgI(AIR,X)]

+ VAR[gI]E[RgI(ARED,X_)]E[RgI(AIR,X)] + VAR[gs]Rgs(ARED)Rgs(AIR)

- {Rm(A D) E[RgI(AIR,x)]+ Rm(AIR)E[RgI(ARED,X)]}

{VAR[m] + COV[m,gs] }

+ {Rm(ARE D) Rgs(AIR)+ Rm(AIR)Rgs(ARED) } COV[m,g s]

{VAR[gI] + COV[m,gs] } (7.7)

The derivation of (7.5), (7.6), and (7.7) are given in Appendix C.

of the percent cover variates can be written,

The moments

E[m] + E[gi] + E[gs] = 1 (7.8)

VAR[m] + VAR[gS]- VAR[gI] + 2COY[m, gs] = 0 (7.9)

for a total of seven conditional moment equations when (7.5) and (7.6) are written

for two bands. The addition of the five soil line equations, i.e., (6.9) and (6.10)

written for both bands, and (7.7) written for m = 0, brings the total to twelve.

The unknowns include i) the means and variances of the three cover types plus

COv[m,gs], ii) the vegetation and shadowed reflectances written for both bands,

iii) the mean and variance of the illuminated soil for both bands, and the illu-

minated soil reflectance spectral cross covariance. The number of unknowns is 16.
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The solution procedure is, first, as in Case II, to obtain the four illuminated

soil reflectance moments using (6.9) and (6.10). The cross covariance of the soil

reflectance is also directly obtained from those moments or, equivalently, from

conditioning (7.7) along the soil line.

Since there are still four more unknowns than equations, additional

assumptions of i) Poisson spatial distribution and ii) geometric similarity of the

plants are required. Those assumptions introduce two unknowns, r/and At, but

provide four additional equations, namely (6.14), (6.17), and

and

VAR[gl[POisson ] = h2{E[gl],r/,At,Ap)

eov[m,gs] = h3(E[ml,rhAt,Ap}

Graphs of h 1 (equation 6.14), h2,

simulation, level 10 aggregation.

and h 3,

(7.1o)

(7.11)

axe shown in Figure 7.3 for the Case V

The covariance between m and gs was obtained in the following manner. It

was observed during the simulations that the correlation between m and gs could

be approximated by a stepwise linear function of m, as shown in Figure 7.4. The

expression for COV(m,gs) in (7.11) and Figure 7.3 was obtained by combining (7.9)

and the definition of correlation, or

COY(m, g s )
= (7.12)

Pm,g s
[COV (gs )VAR(gl)]0"5

(7.13)

where

p = 1.00 - 0.50E[m]

p = 1.28 - 3.27E[m]

p = --0.57 - 0.43E[m]

for 0.00 < E[m] < 0.10

for 0.10 < E[m] <_ 0.65

for 0.65 < E[m] <_ 1.00
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in order to yield the following semiempirical expression

COV 2 (m,g s ) VAR2(gI) - VAR2(m)
0 =

2p VAR2(m) + c°v(m'gs)- 2

which can be solved by iteration for COv(m,gs).

(7.14)

Since there are still two more unknowns than equations, the solution to the

inverse problem can be obtained in one of two manners. One approach is to

choose two different homogeneous regions, and to write conditional moment

equations for those two regions. Each segment adds seven unknowns (the cover

moments), but provides nine equations ((6.14), (6.17), and (7.5) through (7.9), with

(7.5) and (7.6) written for two bands), for a net gain of two. Thus, theoretically,

the parameters can be obtained by simultaneously solving 25 conditional moment

equations simultaneously.

A second, more practical approach in some cases is to assume that Rgs(_ ) in

equations (7.5), (7.6) and (7.7) is negligible compared to the other terms. That

assumption is only valid for i) relatively clear atmospheric conditions when the

diffuse radiation is small, ii) low zenith angles (i.e., small r/), and iii) bands in

which the vegetation and illuminated soil reflectances are both much greater than

the shadowed soil reflectance. The third condition is generally true for most red

bands, and for near-infrared bands when the extinction due to leaf area is large.

The solution can thus be obtained using one set of conditional moment equations

applicable to one homogeneous region.

Due to the complexity of the equations, the solution to the Case V,

Method 1 inverse problem can not be solved explicitly. Instead, it is obtained by

minimizing the sum of the squared errors between the theoretical and sample
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moments. The procedure involves iteration over E[m], At, and 77until the

minimum error is obtained.

Since the complete set of equations is non-linear, in order to avoid local

minimum solutions, the global solution is obtained by solving the problem over a

range of reasonable initial values and iteration steps. The computer code for the

Case V, Method 1 inverse problem is provided in Appendix D.

The results of applying the second approach to the level 10 aggregation of

Case V are shown in Figure 7.5 and Table 7.1. The procedure provides estimates

of only the mean values for each statistically homogeneous area. The results

indicate that the values of the estimated mean vegetation cover compare

reasonably well to the simulated mean values (the standard deviation of error,

s = 0.056). The reflectances are also fairly well recovered, although _ and A t are

not.

The length scales of the spatial correlation function of soil reflectance were

also computed for Case V - Method 2 using (7.3) and (7.4) for various m's. The

results, shown in Table 7.2 indicate that the retrieval of such length scales was

only possible for low values of m. The poor retrieval is a result of the large

amount of shadow which masks the soil background in this simulation at large

m_s.

7.2.2 Estimation of Parameters. Method 2: S >p..2.._._

At the level 30 aggregation, Sp equals _ >> 10. At such large Sp, an

approximate functional relation occurs among gl, gs and m as shown in (6.18).

Since the simulated canopy reflectance is also constant, then pixels with different

amounts of canopy cover will orient themselves parallel to the soil line as

described in Sections 5.4 and 6.2.4, and shown in Figure 7.6. Thus, the inverse

procedure for large Sp makes use of that knowledge by formulating approximate
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conditional moments for individual subsets of pixels which lie along those parallel

lines.

As in Case II, once the appropriate set of pixels needed for the conditional

sample moments are determined from the scattergram, the parameter estimation

can proceed using only one band. For each arbitrarily chosen parallel line, there

are seven unknowns including i) the three fractional covers m, gI' and gs'

ii) two constant reflectance terms, Rm(A ), Rgs(A), and iii) the mean and

variance of the soil reflectance, E[RgI(A,x)], and

The available conditional moment equations are

VAR[RgI(A,x)], respectively.

i) the two soil line equations,

(6.9) and (6.10), ii) the conditional mean reflectance, (6.19), and iii) the

variance as provided in (6.20). It is noted that (6.20) is obtained directly from

(7.6) by assuming that the variances of the fractional covers are negligible.

In addition, the percent cover equation, (5.7), gives,

m + gs + gI = 1 (7.15)

for a total of only five equations, two less than the number of unknowns. The

above formulation only allows several terms to be retrieved. For instance, the soil

line moments can be obtained as in the previous examples. Then, by selecting an

arbitrary locus of pixels parallel to the soil line, gI can be solved directly using

(6.20). However, close examination of (6.19) reveals that m cannot be determined

using only the above equations.

The remaining terms can be obtained by first assuming Poisson spatial

distribution and geometric similarity of the plants. Those two assumptions permit

one to use (6.24), for a total of six equations, although an additional unknown, r/,

is introduced. Since there are still two more unknowns than equations, the deficit
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is made up in one of two ways. One approach is to arbitrarily choose two

additional parallel lines (for a total of three) for which the above conditional

moments apply. Each additional line introduces three new unknowns (m, gs' and

gi), but augments the number of equations by four (equations (6.19), (6.20),

(6.24), and (7.15)). Thus, m for each line is obtained by first solving for g! for all

three parallel lines using (6.20), and then solving the remaining moment equations

simultaneously. While this approach is theoretically correct, its validity is limited

to scenes which possess a large number of pixels in at least three different

homogeneous regions.

As in Method 1, a second approach is to assume that the shadowed

reflectance term in (6.19), gsRgs(A), is negligible compared to the other two

illuminated terms. That assumption eliminates the need to calculate Rgs(A ) and

the analysis can be conducted using only two parallel lines.

The results of the second approach are summarized in Figures 7.7 and 7.8

and Table 7.1. Figure 7.7 contains plots of the estimated canopy cover versus the

simulated values for each pixel contained in each of five conditional lines, using

both the red and infrared bands. The standard deviation of error s, is 0.028 in

the red band and 0.069 in the infrared band. Although the agreement is very

good, Figure 7.7 indicates that the estimated values are generally lower than the

simulated values, especially at higher values of m. That difference is due to the

error associated with neglecting the cover variance terms in (7.6). The error is

greater for estimates made using the infrared band since the magaitudes of the

infrared reflectances are greater than those in the red band.

Figure 7.8 indicates equally good agreement between the simulated values of

gi(m) and gs(m) and the theoretical curves using (6.24), (7.15) and the mean
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estimated value of 7/. The simulated and estimated reflectance terms also compare

favorably, as shown in Table 7.1.
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Chapter 8

CASE STUDIES

This chapter examines the application of the canopy reflectance model to

actual multispectral data obtained over two field sites. The first site is a pecan

orchard in southern Arizona for which actual aerial radiometric data were

obtained. The second site is a pinyon-juniper watershed in northern Arizona for

which both aerial and satellite multispectral data (Landsat TM data) were

obtained. Atmospheric effects on the subpixel estimates are examined using

hypothetical values of backscattered solar diffuse radiation.

8.1 Scattergram Qf _ Peqgn Orchard

The pecan orchard represents a special case of the canopy reflectance model

in which the trees are spatially distributed in a fixed geometric fashion and the

only random property is the soil background reflectance. In this example, a visual

comparison is made between the plots of the radiometric data in the red-infrared

reflectance space, and a hypothetical scattergram constructed from ground truth

measurements at the time of overflight. The moment analysis is not applied to

the estimation of subpixel cover due to the limited number of pixels. Rather, a

qualitative comparison of the theoretical and estimated canopy cover is made.

8.1.1 Site Description

The study site is located within a flat one mile square area near Maricopa,

Arizona, about 40 km south of Phoenix. Aerial radiometric measurements were

collected at an altitude of about 150 meters at 9:30 a.m. on June 12, 1988, as part
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of the MAC (Maricopa Agricultural Center) III Experiment organized by the

Water Conservation laboratory, Agricultural Research Service, Phoenix, Arizona.

During the experiment, there were no clouds, and the air could be qualitatively

described as clear and dry.

The orchard itself consisted entirely of pecan trees planted on a square grid

in an east-west orientation, with center intervals of approximately 85 meters.

The diameter of individual trees ranged from about 5 to 10 meters (A t _,z20 - 80

sq.m.), with a height to depth ratio of about unity. Tree height was generally

constant in any given section of the orchard, and thus, tree canopies were not

significantly shadowed by adjacent trees. The size of the trees and, thus, the

amount of canopy cover, could vary from pixel to pixel. Trees were interspersed

with a combination of bare soil and senesced grasses.

8.1.2 Reflectance Data

Radiometric observations were made using an Exotech radiometer with

Thematic Mapper red (0.62--0.69/an) and infrared (0.78--0.90/m'0 filters at a

ground resolution of about 40 meters (Ap _- 1250 sq.m.). The solar angle was

estimated to be 43.5" at the time of overflight.

Radiometric observations over the pecan orchard were converted to

reflectance factors (ratio of target reflectance to the reflectance of a Lambertian

surface; See Jackson et al, 1987) by Moran (1988). The reflectance factors are

proportional to and approximately equal to the target reflectance, and thus for

simplicity, they will be termed reflectance throughout this section.

Ground truth values of the pecan canopy's bulk reflectance could not be

easily obtained due to the large size of the trees. However, the aerial observations
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over nearly continuous canopies indicate that the bulk canopy reflectance is about

2 - 4% in the red band and 45 - 55% in the IR band. The mid-points of those

values (canopy red reflectance = 3.0%; canopy IR reflectance = 50%) were

arbitrarily chosen as estimates of the canopy reflectances. Shadowed reflectances

were assumed to equal 10% of the canopy reflectances.

Since no treeless pixels existed in the orchard itself, the soil reflectance and

the soil line was obtained by sensing bare soil fields (Maricopa field No. 18, 27,

lnd 32) immediately adjacent to the orchard which contained a mixture of bare

soil and senesced grasses. The soil line obtained from a red-infrared plot of the

data is shown in Figure 8.1. The line exhibits a nearly linear relationship as

described in equation (3.5). The mean, standard deviation, and covariance length

scale (computed as the average e-folding distance of the empirical correlation

function) of those soil pixels, together with the parameters of the soil line are

provided in Table 8.1.

8.1.3 Fractional Cover Estimates

As a substitute for ground truth, independent estimates of fractional cover

were made by analyzing the histograms of the digitized multispectral video images

for each of four radiometric observations. Because the length scale of the canopy

is several meters, and the length scale of the video pixel is only about one-half

meter, a majority of the pixels will be approximately pure canopy, pure shadow,

or pure illuminated soil pixels. As a result, if the reflectance of each cover type is

unique, a histogram of the digitized video image should possess local modes

corresponding to each of the different cover types. The percentage of pixels

associated with each mode approximates the amount of a particular fractional

141



5O

(.9

4O

30

_ 20

<

10

0

0

%° ,'_'

. t

J

f

J

I , I , I I I

10 20 30 40

RED REFLECTANCE (%)

5O

Figure 8.1 Red-infrared scattergram of pecan orchard and bare soil•

142



Table 8.1

Soil Line Parameters
of Pecan Orchard

Red TM Band

(0.62- 0.69 /an)
Infrared TM Band

(0.78- 0.90 Urn)

Mean Reflectance (%) 27.3 32.8

Standard Deviation

of Reflectance (%) 3.7 4.1

Soil Line Equation (%): RgI(AIR ) = 1.09 RgI(ARED) + 3.06

Covariance Length Scale _- 200 meters

143



cover, depending on the wavelength.

For example, Figure 8.2 contains the red and infrared histograms of one

video image (time = 9.3969 hours) for which a radiometric observation was

simultaneously made. In the red image, trees and shadows appear very dark,

while the soil is bright. The corresponding red histogram exhibits a strong

bimodal shape, with a local minimum occurring at an intensity level of 89. Thus,

intensity levels less than 89 (31%) are assumed to represent pixels containing

primarily vegetation and shadow. Pixels greater than 89 are assumed to represent

illuminated soil (69 %).

For the infrared image, only the shadows appear dark while both trees and

soil are bright. Since the amount of shadow is small, a strong bimodal effect is

not observed in the histogram, although a slight trough is observed at an intensity

level of about 128. As a result, pixels with intensity < 128 are assumed to

represent shadow (12%), while pixels with intensity > 128 represent vegetation

and illuminated soil (88%). Combining the results of the histogram analysis for

both bands yields estimates of fractional cover for the vegetation (19%), shadow

(12%), and illuminated soil (69%), for the single radiometric observation.

Quantitative estimates obtained in the above manner were confirmed by visual

examination of the video image.

8.1.4 (_qmpgisqn of Actual and Hypothetical Scatter_ams

The hypothetical scattergram is obtained by first conceptualizing the orchard

as a stochastic geometric surface, in which the only variables are the fractional

canopy cover and the soil reflectance. The hypothetical reflectance of a pixel was
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assumed to be

R(A) = mRm(A ) + (A) +gsRgs giRgI(A,x-)
(8.1)

where Rm(), ), Rgs(A ) and Rgi(A,x ) represent estimated ground truth reflectances

of the illuminated canopy, shadowed soil, and illuminated soil, respectively.

The next step is the calculation of the sampling scale ratio for regular

geometries, S G, based on the similarity parameter. Visual observations at the

time of the experiment indicated that the trees could best be represented by

circular cylinders, and that they were approximately geometrically similar. From

Table 6.1,

= 4H tan 0 (8.2)
rD

Inserting the parameters of the experiment (8 = 43.6 degrees, H/D -_ 1) into the

above equation yields ,7 = 1.21. The sampling scale ratio for geometric

distributions is

S G = Ap/r/A t _ 13-50 (8.3)

Thus, based on the criterion given in (6.26) for geometric distributions, since

S G >> 1, the assumption of large Sampling Scale Ratio is made.

The assumption of i) geometric similarity and ii) large sampling scale allows

one to formulate a unique analytical relationship among the fractional covers as

described in Section 6.2.4. For the particular orchard described above, two
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different shadow regimes can be identified. Regime I occurs when the trees are

small and the entire shadow cast by a tree is observed. In this case the fractional

shadowed area gs is linearly related to the fractional canopy cover, m or

where # equals the tangent of the zenith angle and f is a similarity parameter

equal to the ratio of canopy diameter to tree height. Regime II occurs for larger

trees when the shadow cast by one tree extends far enough as to be overlapped, in

part, by the canopy of an adjacent tree. A second term is added to the above

equation to account for that decrease in shadowed area, or

for 0< 2j-_[l+_]-1< 2J"_- (8.5)

In both regimes, the illuminated soil is constrained by

gI = 1-m-gs (8.6)
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A sketch of both regimes is provided in Figure 8.3 The graphical forms of

gs(m) and gi(m) are given in Figure 8.4. Also plotted on Figure 8.4 are the

actual fractional cover estimates of several pixels obtained from aerial video. The

plots indicate that the theoretical curves of the fractional shadow and illuminated

soil agree reasonably well with the actual data.

Using (8.1) through (8.6), the scattergram of a hypothetical orchard scene

was constructed by superposing canopy cover ranging from 10 to 70 percent onto

each of the soil background pixels. The resulting scattergram based on that model

is shown in Figure 8.5. It possesses many similarities to the simulated cases

presented earlier, including a triangular shape with curved sides and a fiat base.

Figure 8.5 also includes the plot of several radiometric data from Figure 8.1

for which the subpixel fractional covers were estimated. The orchard itself does

not possess a wide range of vegetation cover needed to establish a complete

triangular scattergram as in the simulations. However, a comparison of the actual

data with the hypothetical scattergram indicates that their location is consistent

with the predicted values. A summary of the actual and hypothetical fractional

covers for four pixels is provided in Table 8.2. The good agreement achieved

above serves as a preliminary confirmation of the validity of the canopy

reflectance model for explaining how subpixel variations in cover type affect the

relative location of pixels in a red-infrared scattergram.

8.2 Pinyon-Juniper Watershed: Aerial Radiometric Data

This example tests the canopy reflectance model and inverse procedure on an

actual semivegetated watershed for which aerial radiometric data were obtained.
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Table 8.2

Comparison of Actual and Hypothetical
Fractional Covers for

Pecan Orchard

Number

1

2

3

4

Total Total

Canopy Shadowed
Cover Soil Cover

Actual Model Actual

55 54 35

5O 51 30

15 21 11

19 20 12

Total
Illuminated
Soil Cover

Model Model

29 10 17

29 20 20

25 74 54

24 69 56
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It also shows how the procedure can be adapted to situations in which the total

number of pixels is small. In such cases, the red-infrared scattergram may not

form a fully developed tasseled cap shape, as previously shown for the idealized

simulated cases.

8.2.1 Site Description

The study site is a small, natural semivegetated watershed, about 0.8 km 2,

located in the Beaver Creek Basin in the Coconino National Forest in north

central Arizona, as shown in Figure 8.6. The area is relatively flat sloping 3.0

percent to the southwest at an average elevation of 1900 meters. The

predominant tree species is alligator juniper (Juniper'us deppeana), a short,

egg-shaped evergreen with tiny scale-like leaves, ranging in height from 3 to 5

meters. Small amounts of Utah Juniper (Juniperus osteosperma), a tree similar in

shape to the Alligator Juniper, and Ponderosa Pine (Pinus ponderosa), a taller,

narrower evergreen with a rounded crown, also exist. The area between the trees

is interspersed with a mixture of bare soil and a variety of sparse, relatively dry,

semiarid grasses and shrubs. Field observations indicate that the fractional

pinyon-juniper canopy cover ranges from about 0 to 70 percent, with a mean of

about 25 percent. Soils are rocky and developed from volcanic materials,

primarily basalts (Clary et al, 1974).

8.2.2 Acouisition of Radiometric Data _nd Gr0un_ Truth

Multispectral data were collected in a similar manner as for the pecan

orchard experiment. The overflight occurred between 10:15 and 10:30 a.m. on

June 23, 1988. at an altitude of about 150 m. using nadir-viewing instruments.
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Figure 8.6 Location Map: Beaver Creek Watershed.
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Approximately 200 radiometric observations were made using an Exotech

radiometer with Thematic Mapper red (0.62-0.69 jml) and near infrared (0.78-0.90

_) filters at a ground resolution of about 40 meters. Simultaneous multispectral

video was also obtained.

Late June was chosen as the acquisition period as it was a relatively dry

period when soil moisture was low and the grasses were in a somewhat senesced

state, offering good contrast to the dark green evergreens. The solar zenith angle

is relatively low compared to other seasons which minimizes the effect of shadows.

Measurements were taken at 10:00 AM in order to conduct the analysis at the

same time as a typical Landsat overpass, and to avoid further buildup of haze

which was occurring during the morning of the overflight.

The radiometer data, recorded in terms of voltages, were not converted to

reflectances, as it would have required additional ground-based instrumentation,

not typically available in most remote sensing applications. Further, since the

primary interest was in estimating fractional cover amounts, conversion to

reflectances was not necessary. Sensor voltage is approximately linearly related to

incoming radiance (Jackson et al, 1987). Thus, in the analysis which follows,

voltage was used as a surrogate measure of reflectance. The analysis is valid as

long as i) the time interval over which the data were collected was small (several

minutes) in order to minimize the effect of changing solar zenith angle, ii) the

solar irradiance on all target pixels was constant, and iii) diffuse atmospheric

effects on the reflected radiance were minimal and constant over the region.

Estimates of fractional cover were made using the video data described in

Section 8.1.3. The resulting histograms also exhibited a bimodal shape as for the

pecan orchard, as shown in Figure 8.7 for one observation.
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8.2.3 Estim_tiQn of Subpixel (7_ooy Cover

As in the previous cases, the first step was to plot the entire set of

observations in the red-infrared space as shown in Figure 8.8. The resulting

scattergram, now in terms of voltages, possesses an overall triangular shape,

although not as well defined as for the simulated cases. A relatively flat base does

exist, however, the top of the scattergram is somewhat rounded and does not

possess a fully developed "tasseled cap" shape. The reason for this lack of

definition is that, unlike the simulated scenes, the watershed does not possess a

full range of combinations of fractional vegetation cover and soil reflectance.

The second step in the inversion procedure was to conceptualize the

pinyon-juniper landscape as Poisson distributed spheres resting on a flat surface.

The spherical trees are assumed to exhibit a constant bulk reflectance in each

band, Rm(A ), which accommodates both illuminated and shadowed portions of the

canopy. Soil reflectance is variable and can be shadowed or illuminated. The

total reflectance of any pixel is thus given by

R(_) = m Rm(,_ ) + gs Rgs(A) + gIRgi('_'x) (8.7)

The geometric similarity assumption allows ,7 to be estimated directly from Table

6.1, Item (iv). The value of 17was calculated to be 0.294 based on an estimated

solar zenith angle of 30.25 degrees, obtained using Iqbal (Chapter 1, 1983). The

mean tree diameter is on the order of several meters, thus,

1300

Sp = 0.294A t >> 10 (8.8)
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and the assumption of a large sampling scale ratio is made.

Next, the mean and variance of the soil background radiance (expressed in

terms of voltage) were calculated by fitting a straight line through approximately

20 pixels located at the bottom of the scattergram (Figure 8.9), and by estimating

the moments of those pixels. The pixels do not fall completely on a straight line

since they contmn small amounts of green and senesced grasses, in addition to the

bare soil. The estimated values of the soil moments are provided in Table 8.3.

According to the method for Sp >> 10, the inversion procedure next

requires the identification of sets of pixels lying in a band parallel to the soil line.

The sample moments of those pixels are then used to estimate gI using (6.20).

However, in the present example, the number of pixels in any given line is too

small to compute sample moments, and a slightly different approach must be

taken, requiring two steps. First, instead of choosing subsets of pixels lying

parallel to the soil line, the entire ensemble of pixels (except those associated with

the soil line) were analyzed simultaneously in order to obtain overall estimates of

vegetation reflectance and fractional cover statistics for the watershed. The

analysis required (6.17), (7.8) and approximate relations for the mean (7.5) and

variance (7.6) based on the following order of magnitude analysis.

Since r/- 0.294, then from (6.17) and (7.8) it is reasoned that E[gs] will be

smaller than E[gI] and E[m] for m < 0.5. Since Rgs(A ) is likely to be less than

Rm(A ) and E[RgI(R)] , the product, E[gs]Rgs(A), will also be small compared to

the other two terms in (7.5). The mean reflectance can thus be approximated by

E[R(,_)] "- E[m]Rm(_ ) + E[gi] E[RgI(_)]
(8.9)
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Table 8.3

Estimated Mean Subpixei Parameters

Pinyon-Juniper Watershed, Aerial Data

Parameter

am(ARE D)

Rm(AIR)

E[RgI(AREDI]

E[RgI(AIR)]

VAR[RgI(ARED)]

VAR[RgI(AIR)]

r/

mean fractional

canopy cover
of watershed

Ap

Soil line equation

Estim_,t¢_ Valu_

15.4 volts

79.3 volts

15.5 volts

41.3 volts

21.4 volts _

64.3 volts 2

30.25"

0.294

0.23

1300 meters 2

RgI(AIR ) = 1.72 RgI(ARED) + 14.69
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Similar reasoning allows one to neglect the shadow terms in (7.6).

since gs is small in this case, it follows from (7.9) that

Further,

VAR[m] _ VAR[gl] (8.1o)

Substituting (8.10) into (7.6), neglecting the shadow terms, and rearranging yields

vARER   I"[EIg,l +VA  I ]VARtRgI  'I+[Rm  '-EtRgi  'l]2vARtgIl
(8.11)

Thus, the seven equations (6.17), (7.8), (8.10), (8.9), (8.11) (the latter two written

for both bands) were solved simultaneously to obtain estimates of Rm(ARED) ,

Rm(AIR ), E[m], E[gi], E[gs], VAR[m] and VAa[gi] for the entire ensemble of pixels

covering the watershed. Those results are provided in Table 8.3.

Finally, in order to obtain estimates of fractional cover on a pixet-by-pixel

basis, equations (6.7), (6.24), (6.19) (with gs Rgs(A) neglected) and (7.15) were

combined to yield

R(AIR) = aR(ARED) + [Rm(AIR)- Rm(ARED)]m + 7(1 -m) r/+l (8.12)

Equation (8.12) was solved explicitly for m for each pixel, that is, for each paired

observation (R(ARED), R(AIR) ) in the data set. The computer programs necessary

for the above analysis are provided in Appendix D.

The results of the analysis are graphically displayed in Figures 8.9, 8.10, and

8.11 and Table 8.4. Figure 8.8 indicates that the theoretical canopy-soil
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Table 8.4

Comparison of

Estimated and Actual Fractional Canopy Cover

for Pinyon-Juniper Watershed, Aerial Data

Time of

Acquisition

Oaours)

m gI

Est. Act. Est.

10.2924

10.2942

10.3078

10.3113

0.47 0.41 0.39 0.50

0.21 0.29 0.74 0.65

0.27 0.20 0.65 0.75

0.11 0.17 0.86 0.79

0.14

0.05

0.09

0.04

0.09

0.07

0.05

0.04
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reflectance model and the parameter estimates of Table 8.3 lead to a "triangular"

interpretation of the actual red-infrared scattergrarn. That interpretation stems

directly from the following pair of equations obtained from combining (6.24) and

(8.7) and neglecting the shadow term,

R(ARED) = m Rm(ARED) + (i - m) _+I RgI(ARED)

R(AIR ) = m Rm(AIR ) + (i -m) _I RgI(AIR )

(8.13)

(8.14)

For instance, the apex of the triangle in Figure 8.8 occurs at full canopy cover

(m : 1) in which (8.13) and (8.14) reduce to

R(ARED) -- Rm(ARED)

R(AIR ) - Rm(AIR )

(8.15)

(8.16)

The base of the scattergram occurs for bare soil (m = 0) in which (8.13) and

R(ARED) - RgI(ARED)

R()_IR ) -- RgI()_IR )

(8.14) become

(8.17)

(8.18)

and where (8.17) and (8.18) are related by the soil line equation given in

Table 8.3.

Lines of constant canopy cover indicated in Figure 8.9 are obtained by

setting m constant in (8.13) and (8.14) and letting (A) vary according to the
Rg!

soil line equation. In a similar manner, lines of constant soil reflectance are
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established by selecting one pair of RgI()_RED) and RgI(_IR ) (one point on the soil

line), and letting m range from 0.0 to 1.0 in (8.13) and (8.14). Three such lines

are drawn in Figure 8.9 representing three different soil background reflectances.

Finally, Figures 8.10 and 8.11 and Table 8.4 show a comparison, for five

pixels, of the estimated fractional covers with the actual ground truth estimates

obtained from the video. Figure 8.10 contains a plot of the estimated values

canopy cover versus the ground truth values (s = 0.061). Figure 8.11 contains a

graph of both the estimated theoretical curves of gI(m) and gs(m) and the ground

truth values. The good agreement between estimated values and the ground truth

in both figures supports the applicability of this method for estimating subpixel

fractional cover of semivegetated scenes, at least for the pinyon-juniper landscape.

8.3 Pinyon-Juniper Watershed: Landsat Thematic Mapper Data

This example investigates the fractional cover of the same watershed used in

the previous case, except that Landsat TM data are used instead of aerial

observations. Also, a different version of the inverse procedure is used due to the

nature of the scattergram.

8.3.1 Landsat Thematic MaDoer Data

The Landsat TM data used in this analysis were extracted from Scene ID

Number Y504771733XO, obtained on June 21, 1985. The scene was purchased

from EOSAT, Lanham, Maryland. The data were ordered with standard

radiometric corrections that remove possible sensor error according to EOSAT

procedures, and with an original pixel size of 30 meters. That size, the same as
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the raw data, was selected in order to eliminate resarnpling, and hence unnecessary

distortion to the DN values of the original data.

The month of June was selected as it is normally a dry period of the year

when there are few clouds and the atmosphere is dear. That dryness enhances the

analysis due to the relatively high contrast between the reflectances of the conifer

canopy and the ground, which contains bare soil and senesced grasses. However,

since that dryness can also increase the aerosol count in the lower atmosphere and

thus the diffuse radiance. It was decided to select an image in which those

atmospheric effects were minimal.

Since there was no practical means to estimate aerosol density over the

Beaver Creek Basin for the archived TM images, the selection of the specific scene

was made on the basis of an indirect and qualitative assessment of the cloudiness,

image clarity, and soil moisture for the available TM scenes which were taken in

the month of June. Cloudiness was assessed by comparing the microfiches of

several scenes, made available'by the EROS Data Center, Sioux Falls, South

Dakota, and then selecting those which appeared to be the clearest. Next, the

precipitation and climatic records of nearby meteorological stations for the months

April through June were examined for each of those scenes in order to select the

lowest precipitation, and thus by association, a low soil moisture for the period up

to and including the time of acquisition. Although the above approach yielded

perhaps the clearest of all available images for the month of June and provided

some assurance that the soil was relatively dry, it did not provide any

quantitative information on important properties such as optical thickness and

diffuse radiance. Those quantities can best be obtained using ground-based

instrumentation during the time of acquisition.

168



The Beaver Creek watershed was visually identified on the original scene and

extracted using the General Image Processing Software (GIPS) developed by Peter

Ford at the Center for Space Research, M.I.T. The watershed was located within

a rectangular area covering 30 (vertical) by 29 (horizontal) pixels, or a total of

870 pixels.

8.3.2 Red-Infrared Scatterzrams

Two scattergrams from the original scene are plotted in Figures 8.12 and

8.13, respectively, in terms of the satellite DN values. Figure 8.12 includes a large

region covering 235 sq. kin. containing several watersheds and a variety of

vegetation types and densities. It possesses a typical triangular shape with a

curved top and fiat base, characteristic of semivegetated regions. The lower left

portion of the scattergrarn, somewhat detached from the main part, can be shown

using topographic maps to represent principally water bodies and regions with

extensive shadows such as cliffs and gorges. The soil line was thus defined from

the locus of pixels at the base of the major portion of the scattergram as shown in

Figure 8.12. The mean and variance of the soil line are given in Table 8.5.

The portion of the scattergrarn associated with only the small Beaver Creek

watershed is outlined on Figure 8.12 and also plotted separately in Figure 8.13.

That scattergrarn is located entirely within the lower portion of the large

scattergram and does not possess a triangular shape nor a flat base. Thus, no soil

line could be discerned on the basis of the pixels located within the Beaver Creek

Watershed.
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Table 8.5

Estimated Mean Subpixel Parameters

of Beaver Creek Watershed,

Landsat TM Data

Solar Zenith Angle, 0 = 27.5 degrees

Similarity Parameter, r 1 = 0.241

percent Diffuse Radiation:

Ouantirv Units

0 10 2o 3o

I'(_.RED) DN 0 6 12 18

I'(_.IR) DN 0 6 12 18

m - 0.25 0.23 0.21 0.17

gI - 0.70 0.72 0.75 0.79

gs - 0.05 0.05 0.04 0.04

R'm(_.RED) DN 40 30 18 I

R'm(_.IR) DN 119 116 114 123

E[R'gI(_.RED)] DN 69.5 63.5 57.5 51.5

E[R'gI(_.IR)] DN 56.8 50.8 44.8 38.8

Scene Parameters

E[DN(kRED)] = 58.8

E[DN(_.m)] = 69.5

Soil Line Parameters

E[DN(_.RED)] = 69.5

E[DN(XIR)] = 56.8

Slope, ct = 1.03

Intercept, 13= - 15.4

VAR[DN(_.RED)] = 54.2

VAR[DN(_.m)] = 16.1

VAR[DN(_.RED) ] -- 141.6

VAR[DN0_IR)]-- 161.3
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8.3.3 Estimation 0f Subpixel Canopy Cover

The inverse procedure used in this example was the same as that used for

aerial case, except that the moment equations were written in terms of the DN

values which include atmospheric effects. Further, the soil line, which could not

be defined from the Beaver Creek scattergram, was assumed to be the same as

that of the larger image.

As in the aerial case, the Pinyon-Juniper landscape was assumed to consist

of Poisson distributed spheres. The similarity parameter, r/, was calculated to be

0.241 using Table 6.1, Item (iv), and an estimated solar zenith angle of 27.5

degrees (after Iqbal, 1983, Chapter 1). The Sampling Scale Ratio for Poisson

distributions, equation (6.23), yields

Sp = 700/0.241A t >> 10 (8.19)

and thus a large Sampling Scale Ratio was assumed, allowing one to use (6.24) in

the analysis.

The analysis assumed that the atmosphere was horizontally homogeneous,

that the landscape was regionally homogeneous (no sharp contrasts in landscape

reflectance), and that the vegetation reflectance was constant in both wavelengths.

Further, since r/is small, the shadow terms were neglected as previously argued in

(8.9) and (8.11). Under those assumptions, the expected value and variance of the

entire ensemble of pixels in the scattergram can be written in terms of the

satellite DN values using equation (6.31) and (6.32), respectively, or,

_ ,,, (A,x)]+ I (A) (8.20)E[DN(A,x)Im] = mR'(A) + glE[RkI
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and

m !v  I NI ,x)lml-I Rm( /+ 1

!

where Rm(A ) and R' ()_,x) are "effective '! reflectances of the vegetation and soil as
gI

previously used in Sections 4.3 and 6.3, and l_l()_) is the backscattered solar

radiation term (or simply a calibration coefficient) characteristic of that scene.

The soil line equations can be obtained by conditioning (8.20) and (8.21)

along m = 0, or

and

E[DN(A,x)Im = 0] = E[RgI(A,x)] + l_l(A ) (8.22)

VAR[DN()_,x)Im = 0] = VAR[RgI(A,x)] (8.23)

It is noted that the calibration constant is included in the expected value of the

soil line, and thus mean values of the soil reflectance can not be determined

explicitly as in the previous examples. The variance equation can be expanded,

analogous to (8.11), by inserting (8.10) into (8.21) and rearranging, or,

[ )] [[ ]2vARDN(A ',, EgI + VAR[gI]]VAR[RII()_) ] + [Rm(A) - E[Rkt(a)]]2vAa[g_]

(8.24)

The number of unknowns include the fractional cover variables, m, gI' gs'

VaR[gi], the reflectance quantities, Rm(Ared) , Rm(AIR), E[R_I(Ared)],
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E[R_I (AIR)l, VAR[R_I (Ared)], VAR[R_I (AIR) l, and the atmospheric coefficients,

l_l(Ared) and l_l(AiR), for a total of twelve. The equations available to solve the

problem include i) the mean and variance of the observations, (8.20 and 8.24),

written for both bands, ii) the mean and variance of the soil line equation, (8.22)

and (8.23) written for both bands, and iii) the cover relationship gi(m) or (6.24),

and (8.6) for a total of ten. Thus, the inclusion of the diffuse radiation terms

results in two more unknowns than equations.

There are several ways in which the diffuse terms can be estimated without

actual atmospheric measurements. One method is to recognize that observations

over areas of approximiately zero reflectance (i.e. deep clear water bodies) consist

principally of the diffuse radiance (Lillesand and Kiefer, 1987). A second approach

is to use observations of two additional visible bands over pixels in which the

reflectance is assumed independent of wavelength. By assuming an aerosol

distribution, it may be possible to estimate optical depths and diffuse radiation by

examining the relative intensity of the two bands (Liou, 1983). A third approach

is to develop two additional independent equations using the moment analysis,

such as the use of the cross-spectral covariance or two separate conditional lines.

Since it was not possible to verify the estimated diffuse radiation using any

approach, it was decided to simply assume a range of values and to compare the

results as a function of those assumed values. In general, for optical depths of

about 0.1 or less and surface reflectances of about 0.3, it can be argued that the

backscattered diffuse radiation ranges from about 10 to 30 percent of the total

radiation observed by the nadir-viewing satellite, depending on the wavelength.

Scattering is likely to be greater at smaller wavelengths (i.e. blue) due to the

combined effect of both Rayleigh and aerosol scattering. In the red and infrared

regions, aerosol scattering is likely to contribute the most to the total optical
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thickness (Liou, 1983).

The above set of equations (8.20, 8.24, 8.22, 8.23, and 6.24) written, when

applicable, for both wavelengths, were solved assuming that the backscattered

solar radiation term, 1_1()_), equaled 0, 10, 20, and 30 percent of the mean DN

value of all the pixels in the watershed. For example, since the mean value in the

red and infrared bands equaled 58.8 and 69.5 DN's, respectively, then for the 20

percent case, the backscattered radiation was assumed to be 12 DN's. For

simplicity, both bands were assumed to possess the same diffuse radiance, ignoring

wavelength dependency.

The solution to the above set of equations was found by minimizing the

error between the theoretical moments and the actual moments in the same

manner as for the aerial case. However, it was observed that in a few instances,

two or three minimum values were obtained thus yielding two or three possible

solutions. In all cases, the two additional possible solutions occurred at extreme

values of m (very large, 0.90, or very small, 0.05) that were clearly inappropriate

and thus they were not selected as the best estimate. That choice was supported

by an a priori knowledge that the vegetation cover of the region was neither

extremely dense nor sparse. However, future investigations would not necessarily

benefit from such knowledge.

The results of the analysis are provided in Table 8.5 and Figure 8.14.

Table 8.5 indicates that the estimates of fractional cover are about 0.20, in good

agreement with field observations (about 25 percent). The results are moderately

sensitive to the relative magnitude of the diffuse radiation. The greatest value,

m = 0.25, is estimated when no diffuse radiation is assumed. The estimate

gradually decreases to m - 0.17 for the case with 30 percent diffuse radiation.

Figure 8.14 shows the hypothetical data spaces of the 0 and 20% diffuse
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radiation cases, as compared to the actual scattergram. The hypothetical space

for the 0% case was obtained in the same manner as the _rial case using (8.13)

through (8.18), except that R(A) was replaced by DN(A), and the component

reflectances were replaced by the effective reftectances. The data space for the

20% case was obtained using the same procedure, except that the assumed values

of diffuse radiation were added to those equations. The results indicate that the

peak of the 20% case is located further from the soil line than the 0% case. Since

the positions of the actual scattergram and soil line do not change, the estimate of

fractional cover is directly related to the relative position of the hypothetical peak.

As the peak moves further away from the soil line, the estimate of fractional cover

decreases.

An alternative way of plotting the 20% case is to use (8.13) through (8.18)

as described above without adding the diffuse terms. The "adjusted" data space

would be identical in size and shape as the 20% case plotted in Figure 8.14, but

the entire space would be shifted 12 units downward and 12 units to the left.

While the overall results of the analysis provide analytically reasonable

quantities, they indicate the increasing difficulty in the ability to estimate

fractional vegetation cover when the diffuse component becomes large. Of

particular concern is the rapid decrease in the estimated vegetation reflectance

with increasing diffuse radiation. When the diffuse component is at 30 percent,

the vegetation signal is only (1)(0.17)/18, or about one one-hundredth of the

magnitude of the diffuse term. The signal to noise ratio is thus very small and

even relatively minor perturbations in atmospheric effects would violate the

assumption of horizontal homogeneity. Thus, accurate inversion for vegetation

properties under conditions of moderate diffuse radiation seems unlikely.
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Chapter 9

SUMMARY

9.1 Principal Conclusions

The research in this report has demonstrated that it is theoretically feasible

to estimate spatially-variable bulk properties of semivegetated landscapes at

subpixel scales for optically-thin atmospheres using only one set of multispectral

observations without ground truth, at least for a limited range of landscapes. The

approach relies on the physically-based conceptualization of landscapes as

stochastic--geometric reflecting surfaces, which can possess variability in both the

geometry of the shape and spatial distribution of the plants, as well the vegetation

and soil background reflectance. The degree to which subpixel parameters can be

retrieved depends on several factors including knowledge of the structure of the

landscape, the number of landscape variables, the magnitude of the Sampling Scale

Ratio, and the ability to identify groups of pixels within the red-infrared

scattergram which possess common attributes.

An important feature of the inverse procedure is that it takes advantage of

the multispectral nature of the data by solving equations associated with both the

red and infrared wavelengths simultaneously. It thus extends the work of others

(Otterman, 1984; Li and Strahler, 1985) who have inverted geometric models using

only one band and assumed reflectances. The methodology offers a

physically-based alternative to current practices which are highly empirical.

The reflectance model and inverse technique are primarily applicable to

regional scale hydrologic investigations where the parameterization of numerous

plant and soil properties is not feasible nor of practical importance at such large
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scales. By absorbing the variability of such properties into a few bulk plant and

soil variables, an inherent tradeoff is made between the amount of physical detail

which can be modeled or estimated, and the size of the region which can be

investigated. The technique relies on the existence of a large number of pixels

possessing a wide range of soil and vegetation. Thus, when only a few pixels are

available, or when the entire scene is homogeneous, a different version than those

presented above should be considered.

The inverse method has been tested only on idealized simulated scenes and

one conifer watershed using both aerial and satellite data. Good results were

achieved in the case of Beaver Creek despite some major assumptions including

the Poisson distribution of the trees, constant vegetation reflectance, especially for

the infrared band, similar soil reflectance for the soil line and the semivegetated

areas, and the neglect of shadow contributions for small r/. Further, the procedure

had to be adapted to each case based on the shape of the scattergram and the

limited knowledge of the landsurface. While those algorithms worked well for

both the idealized and actual cases, their general applicability to other

semivegetated landscapes is unknown. Thus, further testing is warranted on a

wide range of other types of semivegetated landscapes in order to validate and

improve upon the methodology presented in this report.

The landscape reflectance simulation model developed in this research has

been shown to be an effective mechanism for investigating the sensitivity of

landsurface variability on the behavior of multispectral data acquired at scales

representative of current satellite pixels. That feature provides a useful alternative

to the toilsome and expensive task of understanding variability in actual scenes by

obtaining simultaneous ground truth for a large number of pixels. By sequentially

altering different variables into the simulations, valuable insight on the

180



multispectral behavior of actual images can be obtained. Modeling of the

landscape is facilitated through the introduction of the non--dimensional similarity

parameter, 77, which generalizes the results without constraining them to any one

geometric shape or solar angle.

A principal finding from the simulations has been the recognition of the

correlation which develops among fractional canopy cover, shadow, and illuminated

soil background with increasing pixel scale. The analytical formulation of the

gi(m) relationships for different spatial distributions (Figures 7.8, 8.4, and 8.11),

based on either deterministic or statistical reasoning, has facilitated the solution of

the inverse problem by eliminating one or two unknown parameters. That

correlation has been shown to be a principal mechanism that contributes to the

evolution of the tasseled cap of red-infrared scattergrams of semivegetated

landscapes.

The moments of the reflectance equations have been expanded in terms of

the moments of the individual variates of the stochastic--geometric reflectance

model for the purpose of solving the inverse problem: The estimation of subpixel

parameters given only the red-infrared scattergram and limited assumptions on the

structure of the scene. The inverse procedure involves equating those analytical

moments to the actual moments of the image, and solving the equations

simultaneously, without the need for ground truth.

Knowledge of the relationship between the physical structure of the

landscape and the shape and structure of the scattergram has been shown to

facilitate the inverse problem in at least two manners. First, it provides a

mechanism for identifying pixels with common attributes, especially for cases with

large Sampling Scale Ratios. Second, it allows the formulation of additional

moment equations, conditioned on those common attributes, which are often much
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simpler than the general moment equations required for cases with small Sampling

Scale Ratios.

The exact formulation of the inverse procedure depends on several factors

related to the structure of the landscape and to the interpretation of the

red-infrared scattergram. There is no single recipe that can be listed that

accommodates all situations. However, several general steps common to the

solution of most of the inverse examples given in this report are as follows:

i) All the radiometric observations for a particular region are plotted in the

red-infrared data space.

ii) A narrow band of pixels lying at the base of the scattergram is selected

as representative of the soil background line, and the reflectance moments of that

ensemble of pixels are computed.

iii) The solar zenith angle is computed based on the time of overpass.

iv) If possible, an assumption is made on the bulk geometric shape of the

plants on the landscape. The similarity parameter, _/, is then calculated based on

the plant shape and solar zenith angle. If the shape is unknown, then 77may have

to be included as an unknown in the analysis.

v) The Sampling Scale Ratio is determined based on the scale of the pixel,

the similarity parameter, and an assumed value of the horizontal scale of the tree.

This calculation is only an order of magnitude estimate and an exact value of the

tree size is not required.

vi) For small Sampling Scale Ratios, the inverse problem is solved using the

full set of moment equations. Their number and complexity will depend on the

number of assumptions one is willing to make on the structure of the landscape.

In some examples, the moment equations can be simplified by neglecting relatively

small terms, such as the shadow terms when y is small. In general, only the
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moments of the fractional cover types for the entire ensemble of pixels can be

retrieved for small Sampling Scale Ratios.

vii) For large Sampling Scale Ratios, several conditional moments can be

written for pixels with common attributes, identified through ones knowledge of

the shape and structure of the scattergram. In general, for cases in which

vegetation reflectance can be assumed constant, pixels of equal vegetation amount

will orient themselves parallel to the soil line. In such cases fractional cover can

be estimated on a pixel-by-pixel basis.

The case studies indicate that the idealized tasseled-cap scattergram is not

always realized due to limited combinations of soil and vegetations properties.

However, inversion can still be achieved if a representative soil line is identified.

Finally, the analysis of the Thematic Mapper data indicates that subpixel

canopy cover can be estimated on a pixel-by-pixel basis without specifying the

absolute magnitudes of the soil and vegetation reflectances, even when there exists

a small backscattered diffuse component. That conclusion is limited to cases with

horizontally-homogeneous atmospheres and regions of low contrast. Preliminary

results indicate that neglecting the diffuse radiation component tends to

overestimate the mean fractional cover of the region.

9.2 Future Research

There are several directions in which future research can proceed. First,

there is a need to understand the sensitivity of the present conclusions to the

various assumptions required for inversion. That can best be achieved with the

aid of the simulation model. The model can be extended to include other factors

including different spatial distributions of plant spacing and soil reflectance,
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atmospheric effects, and other similarity values. Inversion techniques can then be

applied to the new set of scenes. A further extension which would improve the

flexibility of the model is the incorporation of topographic effects, for instance, in

conjunction with U.S.G.S. digital elevation maps.

A more rigorous analysis of the effects of diffuse radiation, both surface

reflected and solar backscattered, is warranted in order to understand its effect on

both the structure of the scattergram and the estimation of subpixel properties.

For the inverse procedure, it might be possible to include the diffuse terms as

unknowns into the analysis. The limits to which the coupled

landsurface-atmosphere radiation model is applicable needs to be defined in terms

absolute values of the principal surface and atmospheric properties, such as optical

depth, landsurface reflectance, and solar zenith angle.

An important application of the reflectance model is the understanding of

the physical basis of common vegetation indices. Although the vegetation indices

are very empirical, they are nonetheless widely used by scientists for the

assessment of vegetation amount. The simulation model can be used to generate

common indices to investigate the sensitivity of subpixel variability on the shape

of vegetation indices, in a manner similar to that used in the present report for

the understanding of red-infrared scattergrams.

The original motivation for the development of the present research was to

define landscape properties necessary for the application of the equilibrium

hypotheses noted in Section 1.1, specifically with regard to estimating soil

hydraulic properties. The analysis of the Beaver Creek vegetation in this report,

together with additional data already collected (Jasinski, 1987), provide the

necessary input to complete that study.
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Appendix A

Red-Infrared Data Spaces

of Simple Hypothetical Semivegetated Scenes
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Appendix B

Analysis of Landsat 2 Multispectral Scanner Dater for the Taos Study Area

During the early stages of this research, several linear regressions were

conducted between formulas using Landsat 2 MSS data and fractional cover

estimated from aerial photography, for a region centered over Taos, New Mexico.

That analysis was conducted prior to the development of the canopy-soil

reflectance model and inverse procedures presented in the main portion of this

report. The results of those linear regressions are presented in this appendix.

Details of the work were reported by Jasinski and Eagleson (1986).

It is noted at the outset that the correlation coefficients of the regression

analyses were low and the results of the regressions were considered inconclusive

due to a variety of reasons. The primary reasons included i) uncertainty in the

quality of the MSS data, which had gone through several preprocessings including

at least two resamplings, ii) problems in registering a given Landsat pixel to a

particular location on the aerial photograph, and iii) difficulties in estimating

fractional cover using the color aerial photographs. Nonetheless, some insights

were gained and a summary of the regression analyses is provided below.

B.1 Site I)¢scrk)tion

The Taos Study Area is outlined in Figure B.1. The land includes a wide

variation in surface relief, ranging from flat plains to rolling foothills, to detached

high ridges. Elevation ranges from 6,000 to 10,000 feet. Vegetation tends to

follow the topography. The lower flats are covered with blue grama and
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Figure B.1 Location Map, Taos Study Area.
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wheatgrass grasslands, and snakeweed, rabbitbrush and sagebrush shrublands.

Pinyon-juniper woodlands are found in the rolling foothills. At the higher

elevations, there is ponderosa pine, spruce, fir and aspen. Percent cover ranges

from nearly 0 to 100 percent, with the majority of the area 40 to 60 percent

covered. At least two trends in percent vegetation cover can be readily observed.

They are, first, a decreased percent vegetation cover with decreasing altitude, and

second, a less dense cover on south-facing slopes compared to north facing slopes

at the same elevation.

B.2 Aerial and $_,tellite Dat_

The database consisted of Landsat MSS data, and 1:3000 aerial photographs,

supplied by the Bureau of Land Management, Branch of Remote Sensing, Denver,

Colorado and the Bureau of Land Management, Taos Resource Area Office, Taos,

New Mexico (Work, 1983).

L_ds_.t Data. The Landsat scene used for this analysis was derived from an

original Landsat MSS scene, Number 21608-16562, on June 18, 1979. The scene

included some preprocessing by BLM in addition to that routinely supplied by the

EROS Data Center on original CCTs. The processing consisted of 1) the removal

of certain radiometric and electronic anomalies known as line drops and banding

by filtering, 2) the removal of minor geometric distortions which were inherent in

the data, and 3), the registration of the Landsat data to a Universal Transverse

Mercator (UTM) map projection using a resampled 100 meter square pixel. Since

the regression procedure worked on a pixel-by-pixel basis, correct registration was

of paramount importance. Landsat data were fitted to the UTM grid by visual

inspection through the use of color slides of Landsat segments projected directly

onto USGS topographic maps.
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Aerial Photography. Approximately eighty color aerial photographs at about

1:3000 nominal scale were borrowed from the Bureau of Land Management, Taos

Resource Area Office, Taos, New Mexico for the current study. Those were taken

on June 16, 1981 using a relatively low flying aircraft with a nine inch square

format and a six inch focal lens.

Photographs were selected to represent a broad range of vegetation cover and

to exclude agricultural and urban areas. Because of the random nature of the

photograph locations, the eighty photographs were distributed over twenty

different USGS quadrangles.

Photograph analysis included several steps. First, photographs were visually

registered to the UTM grid by comparing topographic features of the photograph

to those of the USGS map. Next, the photograph was divided into pixels 100

meters square using a clear overlay and the center eight pixels were selected from

each photograph. Each pixel at 1:3000 scale was about 1 to 1-1/2 inches square

and contained a random vegetation cover interspersed with soil background.

Fractional vegetation cover for each pixel were analyzed using an image

analyzer connected to a video camera. Percent cover was determined by selecting

for each pixel the threshold "grey level" associated with only the vegetation cover

and then computing the total area below (darker than) the threshold level. The

procedure worked satisfactorily for pixels which contain distinct vegetation and soil

characteristics. The error of the canopy cover estimate for such cases, which

represent roughly one half of the over 100 pixels analyzed to date, was several

percent. For pixels containing dark soils or significant shadows, error was

estimated to be roughly -_10 percent. Roughly twenty percent of the pixels

analyzed fit into the latter category.
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B.3 Regression with Normalized Difference Veget_,tion Index

This analysis consisted of regressing the NDVI with ground truth obtained

from the aerial photographs. Two variations of this approach were tested. A

total of 116 pixels were used. The first variation involved using the NDVI defined

in terms of actual integer DN values instead of reflectances. The second approach

used actual radiances computed using conversion factors described by Markham

and Barker (1986). The results are provided in Table B.1 below and shown on

Figures B.2 and B.3.

T_l_le B.1

Normalized Vegetation Index

versus Percent Cover

NVDI Variation m

2_DN 4 -- DN 2

VIDN = 2xDN 4 + DN 2

R 4 -- R 2
VI R =

R 4 + R 2

m = 1.99 VIDN + 0.95 0.61

,, 100 m = 3.06 VI R - 111 0.58

The results indicate that for both variations, about 60% of the change in

NDVI can be explained in terms of percent vegetation cover.

B.4 Regression Using Direct Beam Equation

Assuming that the landscape consists of only two cover types, soil and

vegetation, equation (4.10) can be rewritten,
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m= [7,-R l tRm-R] (B.1)

For constant reflectances, m is thus linearly related to the observed direct beam

radiance or the DN values. With this in mind several linear regressions were

carried out with m as the dependent variable and the DNs as independent

variables. The results are shown in Figures B.4 and B.5 and summarized in Table

B.2,

Table B.2

Summary of Linear Regressions

Direct Beam Equation

Regression Equations IE

m = 126 - 199DN2

m = 377 - 138DN4

m = 120 - 197DN2 cos /_

m = 143 - 189DN2/cos0

0.53

0.10

0.53

0.42

where DN2 and DN4 represent MSS bands 2 and 4, respectively.

Variations of the above direct beam equation include accounting for changes

in zenith angle due to topographic slope. For surfaces with average slope /% the

equation (B.1) can be rewritten

m [Lc°s _
- IL' - ag]/[R m - ag] (B.2)

Zenith angle effects can be included by
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m-E -Rgl/tRm-Rg] (B.3)

where E is the ground slope, measured from USGS 7.5---minute topographic maps.

Zenith angle was computed using the following formula from Iqbal (1983),

Cos 0 = (sine cosE - cos¢ sin/3 cos7) sin_

+ (cos¢ cosE + sin¢ sine cos'),) cos$ cosw

+ (cos_ sine sin'r sinw) (B.4)

where

= solar declination

w = hour angle

"), = surface azimuth angle

E = average slope of pixel

Solar declination and hour angle were estimated from the time of Landsat

overpass.

The results of the linear regression including the ground slope and zenith

angle corrections were also poor, as indicated on Figures B.6 and B.7, and on

Table B.2. Although part of the explanation for the poor correlation may simply

be due to the bidirectional reflection characteristics of the soil, a more likely

explanation may also simply be the inaccuracies introduced by measuring small

distances off the topographic maps. At the 1:24000 scale, pixels are less than

0.2 cm 2 in area and small inaccuracies in measurement or pixel registration can

cause serious error in the regression analysis.
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B.5 Rezression with Kauth-Thomas Indices

The Kauth-Thomas greenness and brightness indices were computed and

then regressed with actual percent cover obtained from the aerial photographs.

The results are shown in Table B.3. They indicate, contrary to expectation, that

brightness appears to explain more of the variation in m than greenness.

Table S.3

Regressions with Kauth-Thomas Indices

Index

Greenness, GU

Brightness, BI

0.24

0.39

The regression analyses yielded,

m = 10.47 + 0.14 GI

m = 82.82- 0.48 BI

B.6 M_jltiDl¢ Linear Re_ression

Multiple linear regressions were carried out with the same data set as in

previous cases with percent cover as the dependent variable and the MSS band

observations as independent variables. The two cases examined were m vs. DN1 and

DN2, and m vs. DN1, DN2, DN3 and DN4. Once regression coefficients were

obtained, theoretical percent cover obtained from the multiple linear regression

analysis was regressed with actual percent cover in order to compare correlation
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coefficients with other methods. The results for the second case are shown on Figure

B.8 (for regression with four bands) and summarized on Table B.4.

Table S.4

Results of Multiple Linear Regression

Re zression Eeuati0n

m = -2.25 DN2 + 0.70 DN4 + 74.97 0.53

m = -2.07 DN1 - 0.62 DN2 + 0.20 DN3 + 0.63 DN4 + 72.25 0.58

As expected, there is negative correlation with the visible bands and positive

with the near infrared. It is also noted that the addition of bands 1 and 3 only

contributes an increase of 0.05 in R 2.

B.7 Regression Using Linear Distances in th¢ Red-Infrared Scattergram

The fractional cover of a given pixel estimated from the aerial photographs,

rag, was regressed with estimate of m based on the pixel's location in the

red-infrared scattergram plotted in Figure B.9 (An expanded version of Figure

1.6). The procedure consisted of the following:

1) All data points within the segment were plotted.

2) Envelope lines are drawn along the three sides of the triangular data

space. The soil line was drawn as a straight line emanating from the origin. (For

the assumption of no shadows and constant vegetation reflectivities, all sides of

the triangle must be drawn straight.)

3) Along the soil line, m was assumed equal to zero. Likewise, at the top

of the triangle, m was assumed equal to one.
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4) For constant vegetation reflectivity, m was assumed linearly related to

the distance between the top and base of the triangle. For example, for a point

exactly halfway between the top and the base, m was assumed equal to 50%

cover.

The graphical results are shown in Figure B.10, which for clarity, includes

only the data points with ground truth, and not the full scattergram. The R 2

value resulting from the regression of mg with m was 0.34.
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Appendix C

Derivation of Equations

This appendix describes the derivation and assumptions of the following

equations presented in the main text:

C1.) General Reflectance Moment Equations

C 1.1) Mean Reflectance

C1.2) Variance of Reflectance

C1.3) Cross-Spectral Covariance

C1.4) Spatial Covariance of Reflectance

C2.) Reflectance Moment Equations: Case V, Method 2

C2.1) Mean Reflectance

C2.2) Variance of Reflectance

C3.) Geometric Similarity Formula for Poisson Distributions
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C1. General Reflectance Moment Equations

The reflectance equation is

R(A,x) = _ fi(x) Ri(A,x )

i

where the terms are defined in Section 4.1.

(4.1)

C1.1 Mean Reflectance

Considering all the terms in (4.1) as random variables, the mean reflectance

in its most general form is

E[R(A,x)] = _ E[fi(x ) Ri(A,x)]

i

Using the identity

(C1.1)

E[xy] = COV[x,y] + E[x] ElY]

equation CI.1 can be expanded

E[R(A,x)] = _ [E[fi(x)] E[Ri(A,x)] + COV[fi(x), Ri(A,x)] ]
i

Assuming that the fractional cover, fi(x) is independent of the reflectance of

that fractional cover, Ri()_,x), the above equation becomes,

E[R()_,x)] = _ U[fi(x)] E[Ri()_,x)]

i

which is the same as (6.1).

(C1.2)

(C1.3)

(C1.4)

C1.2 V_riance of Reflectance

The variance of (4.1) in its most general form is
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VAR[R(A,x)] = X VAR[fi(x ) Ri(A,x) ]

i

+ _ _ COV[[fi(_x ) Ri(A,_x)] , [fj(x)Rj(A,x)]]

iCj

(Cl.5)

If fi(x) and Ri(A,_x ) are independent, the first term on the right hand side of the

above equation can be written

VAR[fix) Ri(A,x)]-

i

_[E[fi(x)]2 VAR[Ri(A,x)]

i

+ r[Ri(A,x)] 2 VhR[fi(x)]

+ VAR[fi(x)] VAR[Ri(A,x)] ] (C1.6)

If it is further assumed that the refiectances are independent of each other, the

second term on the right hand side of (C1.5) becomes

= _ _ Ri(A,x ) Rj(A,x) COV[fi(x ), fj(x)] (C1.7)

iCj

Combining C1.6 and C1.7 yields the variance equation given in (6.2).

C1.3 Cross-$pectr0_l C0vari0,n¢e

The cross-spectral covariance can be expanded using C1.2 as

COV[R(A,x), R(A2,_x) ]

= E[R(AI,X ) a(A2,x)] - E[R(AI,X)]E[R(A2,x) ]
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Inserting (4.1) into (C1.8) yields

COV[R(AI,X), R(A2,x)]

=E
[[ _ fi(x)Ri(Al,X)] [ _ fj(x)Rj(A2,x)l

i j

-E[ _ fi(x ) Ri(Al,X)l E[ _ fj(x)Rj(A2,x)]

i j

(c1.9)

Assuming that the fractional covers, fi(x), are independent of the reflectances,

Ri(A,x ) yields

Cov[R(AlX), R(Afi)]

- _ _ E[Ri(AI,X) Rj(A2,x) ] E[fi(x ) fj(x)]

ij

-_ _ E[Ri(AI,X)E[Rj(A2,x ] E[fi(x)] E[fj(x)]

ij

(C1.10)

Applying (C1.2) to E[fi(x ) fj(x)] and to E[Ri(AI,X ) Rj(A2,x)] and inserting into

(CI.10) yield

COV[R(AI,X), R(A2,x)]

- _ [COV[Ri(AI,X), Rj(A2._)] + E[Ri(AI,X) ] E[Rj(A2,x)] ]

ij

[COV[fi(x),fj(x)] + E[fi(x)] E[fj(x)]]

- _ _ E[Ri(AI,X)] E[Rj(A2,x)] E[fi(x)] E[fj(x)]

ij

Cancelling terms of opposite sign yields

(C1.11)
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cov[R(_l,x),R(_2,__)]

= [ [ [cov[Ri(_l,__l,Rj(%__)]Cov[fi(__),fj(_-)]
i]

+ cov[Ri(Al,x) ' Rj(A2,x)] E[fi(x)] n[fj(_x)]

+ E[Ri(AI,x)] E[Rj(A2,x-)]Cov[fi(x), fj(x)]1
(C1.12)

When i = j, then

and,

fi(x) fj(x)_- f_Cx)

cov[fi(x), fj(x)] - VAR[fi(x)] (C1.14)

Assuming there is no cross-spectral covariance between the reflectances of different

cover types, then

cov[ai(Al,X), Rj(A2,x)] = 0 for i # j (C1.15)

Separating the summation in C1.12 into portions representing i = j and i ¢

j, and inserting C1.13, C1.14, and C1.15 yields,

CoV[R(AI,X) R(A2,x)]

= _ [E[fi(x)] 2 COv[Ri(AI,_), Ri(A2,x)]
i

+ VAR[fi(x)] E[Ri(AI,X)] E[_(A2,x)] ]

+ _ _ E[Ri(AI,X) ] E[Rj(A2,x) ] COV[fi(x), fj(x)]

itj

which is the same as that given in (6.3).
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C1.4 Spatial Covarianc_ 9f Reflectance

The spatial covariance of the total reflectance between two pixels located at

x and x' can be written

COVx[R(£x ), R(_,x')] = COVx [[ _fi(x). Ri()_,x) ] ,
1

where i and j represent cover types. The above can be expanded

COVx[R()_,x), ()_,x")]

l
Ri, x,li x,l]

i j

The first term on the right hand side of (C1.18) can be rewritten

E
[[ _ fi(x)Ri(A,x)J [ _ fj(x')Rj(A,x')]]

i j

= E[_ fi(x)fj(x')Ri()_,x ) Rj()_,x')] (C1.19)

ij

Assuming the fractional

(C1.19) becomes

covers are independent of the reflectances, then

E[_ fi(x)fj(x')Ri()_,x ) Rj()_,x')]

ij

= _ E[fi(x ) fj(x')] E[Ri()_,x_ ) Rj()_,x')]

ij

(cl.20)

The same assumption allows the second term on the right hand side of

(C1.18) to be written
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i j

= 1 E[fi(x)] E[Ri(A'x)] I E[fj(x')] E[Rj(A,x')]

i J

Equations (C1.20) and (C1.21) can be rearranged and combined to yield

COVx[R (A,x), R(A,x')] =

XX[rtq(x)f/x,)1
ij

- E[fi(x)] r[_j(x')] E[ni(_,x)] n[aj(_,x')]]

Using the identity given in (C1.2),

(C1.21)

E[fi(x ) fj(_x')] = COVx[fi(x_) , fj(x')] + E[fi(x)] E[fj(x')] (C1.23)

E[Ri(A,x) Rj(A,x" )] = COVx[Ri(A,x), Rj(A,x" )l

+ E[Ri(A,x)] E[Rj(A,x')]

Inserting (C1.23) and (C1.24) into (C1.22) yields

COVx[R(_,_),a(_,x" )] =

ij

{COVx[Ri(A,x), Rj(A,_x')] + E[Ri(A,x)] E[Rj(A,_x')]}

- E[fi(_x)] E[fj(x')] E[Ri(A,_x)]E[_(a,x')]]

which is the same as (C6.4).

(C1.24)

(c1.25)
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C2. Reflectance Moment Equation_ for (_a_e v - MCthgd 2

The reflectance moment equations for Case V, Method 2, can be derived

from equations (6.1) through (6.4). The notation is changed to that of equation

(5.1), or

R(A,x) = miRmi(A,x) + msRms(A,x)

+ giRgi(A,x ) + gsRgs(A,x)

where i = 1 (in equation (4.1)) designates illuminated vegetation, i = 2 designates

shadowed vegetation, i = 3 designates illuminated soil background, and i = 4

designates soil background shadowed by vegetation.

C2.1 Mean Reflectance

In this example m s = 0, and Rm(A ) and Rgs(A ) are assumed constant

throughout space. The mean reflectance equation is thus

E[R(A,_x)]= Elm] Rm(A ) + E[gs]Rgs(A) + E[gl]E[RgI(A,_x)] (C2.1)

CI.2.2 Variance of Reflectan¢¢

In thiscase it isrecognizedthat the varianceof allthe constant reflectance

terms equalszero,or

VAR[Rm(A)]- VAR[Rgs(A)] - 0

The variance equation in (6.2) becomes

(c2.2)
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VAR[R(A,x_)] - E[gl] 2 VAR[RgI(A,_x)]

+ Rm(A)2 VAR[m] + E[RgI(A,x)]2 VAR[gl]

+ VAR[gI] VAR[RgI(A,_x)]

+ Rgs(A)2 VAR[g s]

+ 2E[Rm(A)] E[RgI(A,_x)]cov[m,gI]

+ 2E[Rm(A)] E[Rgs(A)] COV[m,g s]

+ 2E[RgI(A,x)] E[Rgs(A)] COV[gi,g s]
(C2.3)

be expressed in terms of

COV[m,gi] =

In order to reduce the number of unknowns, all the covariance terms will

cov[m,gs]. For instance,

cov[m, 1 - m - gs]

= E[m(1 - m - gs) ] - E[m] E[1 - m - gs]

= Elm - m 2 - mgs] - E[m] + E[m] 2 + Elm] E[gs]

= E[m] - Elm 2] - E[mgs] - E[m] + E[m]2 + Elm] E[gs]

--[SEmi] + ECm] _] - [EEmg_] - Elm] Etg_]]

(C2.4)= - VhR[m] - COV[m,gs]

Following a similar expansion as above for COV[gi,gs], and inserting those

covariance expressions into (C2.3) yields the variance expression given in (7.6).

The cross-spectral covariance, given in (7.7), can be obtained in a similar

manner as for the variance.
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¢3. Geometric Similarity Formula for Pois_on Distributions

This section derives

distributions given in (6.17).

the geometric similarity equation for Poisson

Assume that a flat surface of area A is covered
P

with a random number of fiat two--dimensional figures of arbitrary shape and size

with mean area a. Assume that the figures can overlap one another, and that the

centers of the figures are Poisson distributed in space with density p. The

expected area that is covered, Ac, can be shown to be (Kellerer, 1983),

letting f = Ac/A p then

E[Ac[P] = Ap[1 - exp(-ap)]

E[f[p] = [1 - exp(-ap)]

(c3.1)

(c3.e)

for trees or plants with projected mean area A t , the expected fractional area

covered is

E[m]p] - [1 - exp(-AtP)] (C3.3)

when the mean shadow cast by an individual tree, St, is defined,

S t = _A t

then the expected fraction of plant and shadow is

(C3.4)

r 1

E[(m + gs)lP ] : [1- exp[-p(A t + St)]J

= [1- exp[-p(_ + 1)At] ] (C3.5)

Assuming that the plant canopy overlaps the shadow (that is, there is no

shadowed canopy), then

Elms] - 0
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From (5.7),

E[gi] = 1-[E[m] + E[gs] ]

Inserting C3.5 into the above,

E[g I] = exp[- p(r/+ 1)At]

= [exp[-PAt]]_+l

Inserting C3.3 into the above yields

E[gI] : [1 - E[m]] 77+1

which is the same as equation (6.17).

(C3.6a)

(C3.6b)

(c3.7)
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Appendix D

Computer Programs

D1.)

D2.)

D3.)

D4.)

D5.)

Canopy-Soil Reflectance Simulation Model

Inverse Procedure for Case II

Inverse Procedure for Case V, Method 1

Inverse Procedure for Case V, Method 2:

i) Estimate Soil Background Cover

ii) Estimate 77

Inverse Procedure for Beaver Creek:

i) Estimate Bulk Parameters for Entire Scene

ii) Estimate Bulk Parameters for Each Pixel
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C

C

C

C

C

C

C
C

C

C

C
C

C

C

C

C

CANOPY-SOIL REFLECTANCE SIMULATION MODEL

BY

MICHAEL F. JASINSKI

PARSONS LABORATORY FOR WATER RESOURCES AND HYDRODYNAMICS

M.I.T, Room 48-212

Cambridge, MA 02139
Tel. 617-253-5483

This program simulates the reflectance of a sparse canopy
consisting of trees superposed on a soil background. Total

reflectance is calculated at each grid point or pixel.
The output files are "CANI4.0UT" (printer) and "CI4BPL.DAT"

(plotter).

C

C

C
C

C

C
C

C

C

C

C

C

C

C

C

C Variables :

C Xl,X2 -
C RNODE -

RAGNODE-

PCTV -

C Version 14: computes visible and infrared reflectances,

percent canopy, and percent shadow for four
levels of aggregation (1,5,10,30). Includes

calculation of percent canopy for

each pixel. Includes soil variability determined

from Turning Bands Model (calculated previously).
For soil reflectance (ASSIGN SOILREF.OUT = FOR002).

Assumes relationship between tree vis/ir reflectances.
Increases dimensions to 150x150.

Includes inhibitory field, ie.e nonoverlapping
of trees. Trees positioned at center of one meter

pixels. Includes shadows as an option. Version 14

reorganizes the sequence of calculations of
reflectance and shadows. If elevations are to

be read then ASSIGN ELEV0 05.OUT FOR001. For

shadows to be read, ASSIGN VEGREF.OUT FOR003.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PCTVAG -

PCTS -

PCTSAG -

THGT -

TREF -

ETREF -

ETHGT -

TDIA -

tree center coordinates

actual reflectance at a given node, finest resolution

aggregated reflectance at a given node

actual percent vegetation at a given pixel, finest

resolution (range 0 - 1.0)

aggregated percent vegetation at a given node

percent shadow in a given pixel (range 0 - 1.0)

aggregated percent shadow

height of given tree

reflectance of a given tree

expected value of tree reflectance
expected value of tree height

diameter of a given tree
VARREF - variance of reflectance

NVI - normalized vegetation index
MREF - mean of reflectance

IBAND - number of reflectance bands

IAG - highest level of aggregation

ISHAD - control parameter for shadow computation

(0 = no shadows computed, 1 = compute shadows)

IELEV - control parameter for elevation computation

(0 = compute elevations, 1 = read elevations)

IVREF - control parameter for vegetation reflection
computation (0 = compute, 1 = read from file)

IVDIA - control parameter for special case of tree
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C diameter = 1 pixel (0 = dia not equal to

C one pixel, I = dia equal to 1 pixel)

C VBF_F - vegetation reflectance distribution

C Last revised: 1/7/88

&

&

&

&

&

&

&

&

REAL Xl (20000) ,X2 (20000) ,RNODE (2,150,150) ,TDIA (20000) ,

TREF (2, 20000) ,ELEV(-10:150,150) ,

LAM, ETDIA, ETREF (2 ) ,STREF (2 ) ,THGT (20000 ) ,

MREF (2) ,RAGNODE (2,150,150) ,

DIST SQ, DIST(150),

PCTV (150,150) ,PCTVAG (150,150) ,ALPHA, THETA, PCTS (150,150) ,

PCTSAG (150,150) ,PCTVI (150,150) ,PCTVIAG (150,150) ,

PCTGS (150,150) ,PCTGSAG (150,150) ,NVI (150,150) ,SI, $2,

PCTVS (150,150) ,PCTVSAG (150,150) ,VREF (150,150) ,VI,V2

INTEGER NUM, IDIM, IBAND,IA, IAG, IELEV, ISHAD,_F, IVDIA

OPEN (10, FILE=' _4. IN' , STATUS=' OLD ')

OPEN (II, FILE= 'CAN14. OUT ', STATUS= 'NEW ', FORM= 'FORMATTED ')

OPEN (I 3, FILE= 'C14BPL. DAT ',STATUS= 'NEW' , CARRIAGECONTROL= 'LI ST ' )

C Input model parameters

READ (10, *) IBAND

READ (I0,*) IDIM, IAG

READ (i0, *) IELEV, ISHAD

READ (i0, *) IVREF, IVDIA

READ (I0,*) VI,V2

READ (i0, *) SI,$2

READ (I0, *) LAM

READ (i0, *) ALPHA, THETA

READ (I0, *) ETHGT, STHGT

READ(10,*) ETREF(1) ,STREF(1)

READ (I0, *) ETREF (2), STREF (2)

C Call RANGEN to generate tree locations, heights, and diameters

CALL RANGEN(IELEV, IDIM, LAM, ALPHA, ETHGT, STHGT, Xl,X2,

& THGT, TDIA, NUM, IBAND,ELEV)

C Call OUTPAR to write inputted parameters and number of trees.

CALL OUTPAR(LAM, ALPHA, THETA, ETHGT, STHGT, ETREF, STREF, IBAND,NUM)

C Call ELEVA to compute elevation of tree at each node.

CALL ELEVA (ISHAD, IELEV, IDIM, NUM, ELEV, ALPHA, Xl, X2, THGT, TDIA)

C Call OUTEL to print elevation at each node.

CALL OUTEL (IDIM, ELEV)

C Call REFLEC to compute the reflectance at each node (before

C shadow subroutine).

CALL REFLEC (IDIM, NUM, Xl, X2, TDIA, ETREF, STREF, SI, $2,

& TREF, RNODE, IBAND, PCTV, IVREF, IVDIA, VREF, VI, V2)
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C Call SHADOW to compute shadowed pixels (reflectivity =

CALL SHADOW (ISHAD, IDIM, ALPHA, THETA, ETHGT, STHGT,

& RNODE, ELEV, IBAND, PCTS, PCTV, PCTVI, PCTGS)

Compute average reflectance

DO 100 IAGR = 1,4
IA=I

IF (IAGR.EQ.2) THEN
IA = 5

ENDIF

IF (IAGR. EQ. 3) THEN
IA = i0

ENDIF

IF (IAGR.EQ.4) THEN
IA = 30

ENDIF

IF (IA.LT.2) THEN

0.0).

for increasing levels of aggregation

CALL OUTREF (IDIM, NUM, RNODE, IA,

IBAND,PCTV, PCTS)

CALL OUTPLOT(IDIM, RNODE,IA, IAG, IBAND,PCTV, PCTVI,

PCTVS,PCTS,PCTGS,ELEV)
ELSE

CALL AGGREG(IDIM, RNODE,RAGNODE, IA, IBAND,PCTV, PCTVAG,

PCTS,PCTSAG, PCTVI, PCTVIAG, PCTGS,PCTGSAG)

C call OUTREF to print array of reflectances and subpixel
C components at each node.

C

CALL

&

CALL

&

ENDIF

OUTREF(IDIM, NUM, RAGNODE, IA,

IBAND,PCTVAG, PCTSAG)

OUTPLOT(IDIM, RAGNODE, IA, IAG, IBAND,PCTVAG,

PCTVIAG, PCTVSAG, PCTSAG, PCTGSAG, ELEV)

Subroutine to sunmmarize statistics of subpixel percentages

CALL OUTPCT(IDIM, IA, RAGNODE,PCTVAG, PCTVIAG, PCTSAG, PCTGSAG)

100 CONTINUE

STOP

END

C

C This subroutine aggregates the reflectance values and subpixel
C percentages up to the level IA

SUBROUTINE AGGREG(IDIM, RNODE,RAGNODE, IA, IBAND,PCTV, PCTVAG,

& PCTS,PCTSAG, PCTVI,PCTVIAG,PCTGS, PCTGSAG)

REAL RNODE(2,150,150),RAGNODE(2,150,150),PCTV(150,150),

& PCTVAG(150,150),PCTS(150,150),PCTSAG(150,150),PCTVI(150,150),

& PCTVIAG(150,150),PCTGS(150,150),PCTGSAG(150,150)

INTEGER IDIM, IA, IBAND,IX, IY

C Initialize variables
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6O

5O

IXl 0
IY = 0

DO 50 I I I,IDIM

DO 50 J = I,IDIM

DO 60 IB = I,IBAND

RAGNODE (IB, I, J)

CONTINUE

PCTVAG(I, J) = 0.

PCTSAG (I, J) = 0.

PCTVIAG(I,J) = 0.0

PCTGSAG (I, J) = 0.0

CONTINUE

=0.

C Compute aggregated matrix

&

130

&

&

&

&

DO 100 I = l, IDIM-IA+I, IA

IX = IX + 1

DO ii0 J = i, !DiM-IA+I, IA

IY = IY + 1

DO 120 II = I, IA

DO 120 Jl -- I,IA

DO 130 IB = I,IBAND

RAGNODE (IB, IX, IY)

CONTINUE

PCTVAG (IX, IY)

PCTSAG (IX, IY)

PCTVIAG (IX, IY)

PCTGSAG (IX, IY)

-- RAGNODE (IB, IX, IY) +

KNODE (IB, I+II-l, J+Jl-l) / (IA**2)

= PCTVAG(IX, IY) +
PCTV (l+II-l, J+Jl-l) / (IA**2)

= PCTSAG(IX, IY) +

PCTS (l+II-l, J+Jl-l) / (IA**2)

= PCTVIAG (IX, IY) +

PCTVI (I+II-l, J+Jl-l) / (IA**2)

= PCTGSAG(IX, IY) +

PCTGS (I+II-!, J+Jl-l) / (IA**2)

120 CONTINUE

110 CONTINUE

IY =0

100 CONTI_K/E

RETURN
END

C

C Subroutine RANGEN samples from appropriate random

C distributions to generate tree center locations,

C then tree heights and diameters.

C Variables:

C RAD

C NUM

C SECNDS

C GGUBFS

C GGNML

- radius of tree

- number of trees

- MICROVAX function returns time in sec.

- IMSL uniform random number generator

- IMSI normal random number generator

SUBROUTINE RANGEN(IELEV, IDIM, LAM, ALPHA, ETHGT, STHGT,

Xl,X2,THGT, TDIA, NUM, IBAND,ELEV)

REAL LAM, ETHGT, STHGT, MDIA, ELEV(-10:I50,150),
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RADIUS,OMEGA,TDIA(20000),THGT (20000) ,

Xl (20000) ,X2 (20000) ,MHGT,

GGUBFS, SECNDS, R (1) ,OVERLAP

INTEGER NR, IBAND, IXl (20000) ,IX2 (20000)
DOUBLE PRECISION SEED

SAVE SEED

PARAMETER (PI--3.14159)

C Zero variables.

RADIUS = 0.0

NUM =0

_=i

200

C If(IELEV=I) then read elevations computed outside

C this program.
IF (IELEV. GT. 0.5) THEN

READ(l,*)
DO 200 J=I,IDIM

READ(l,*) (ELEV(I,J),I=-i0,0)

READ(l,*) (ELEV (I, J), I= 1,25)

READ(l,*) (ELEV (I, J), I= 26,50)

READ(l,*) (ELEV(I, J), I= 51,75)

READ(l,*) (ELEV(I,J),I= 76,100)

READ(l,*) (ELEV(I,J),I= 101,125)

READ(l,*) (ELEV(I,J),I= 126,150)
CONTINUE

DO 210 J--I,IDIM

DO 210 I=-10, IDIM

IF(ELEV(I,J).GT.0.0) THEN
NUM -- NUM + 1

THGT (NUM) = ELEV (I,J)

Xl (NUM) = I

X2 (NUM) = J

210

TD_A (NUM)
ENDIF

CONTINUE

GO TO ii0

ENDIF

--I.0

C Obtain seed from internal clock.

SEED = SECNDS (0.0) + i0000.

C Generate tree centers .........................................

C Simulate 2-D Poisson Process

C Source: Cox, Point Processes

C Method: generate variable X = PI*(R2**2 - Rl**2) from

C exponential distribution, and angle,
C OMEGA, from uniform distribution on 0,2PI

C To obtain exponential deviate, X, from U uniform (0, i):

C X = (-I/R)*LOG(U);

C where f(x) = R * exp(R*x)

C GGUBFS(SEED) - IMSL uniform random number generator
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C Maximumradius of tree location equal to extent of field
C plus ten times tree diameter.

C Maximumradius is SQRT(2)*IDIM/2 + 3*RMAX

i0
RADMAX= 3.*(ETHGT*(TAN(ALPHA*6.283/360))*2.) + 106.1

RADIUS = SQRT ((- (I./LAM) *LOG (GGUBFS (SEED)) )/PI

+ RADIUS*RADIUS)

C If radius exceeds extent of field return to main program.

IF(RADIUS.GT.RADMAX)GO TO 20

IF(NUM. GE.20000)GO TO 20

C Increment tree number, generate angular coordinate.

NUM = NUM+l

OMEGA = GGUBFS(SEED) * 2. * PI

IXI(NUM) = RADIUS * COS(OMEGA) + 75.

IX2(NUM) = RADIUS * SIN(OMEGA) + 75.

C Put tree at center of pixel by truncating to integer value.

Xl (NUM) = IX1 (NUM)

X2 (NUM) = IX2 (NUM)

C Generate tree height (normal distribution) ...................

C Set bounds for acceptable range of heights(l-10 meters only).

CALL GGNML (SEED, NR, R)

THGT(NUM) = ETHGT + (STHGT*R(1))

IF (THGT (NUM) .LT. 0. ) THEN

THGT (NUM) = 1.0
ENDIF

IF (THGT (NUM) .GT. I0.0) THEN

THGT(NUM) = 9.9
ENDIF

MHGT = MHGT + THGT (NUM)

C Compute tree diameter ........................................

TDIA(NUM) = THGT(NUM)*TAN(ALPHA*6.283/360)*2

MDIA = MDIA + TDIA(NUM)

C Compute inhibitory field. If tree locations overlap

C then no tree is generated (Decrement tree NUM).

IMAX = MIN (NUN, 500)

ITEST = 0.

IF (IMAX.LT.2) GO TO 600

DO 600 IT = I,IMAX-I

IF(ITEST.GT.0.1) GO TO 600

DIST TR = SQRT((XI(NUM) - XI(NUM-IT))**2 +

(X2 (NUM) - X2 (NUM-IT)) **2)

OVERLAP = ((TDIA(NUM)+TDIA(NL_-IT))/2) - DIST TR

IF (OVERLAP. GT. 0. I) THEN

NUM = NUM-I
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C

600

ITEST I i. 0
ENDIF
CONTINUE
IF(ITEST.GT.0.1) GOTO I0

GOTO I0

20 MHGT= MHGT/NUM
MDIA= MDIA/NUM

I!0 RETURN
END

C
C Subroutine ELEVAcalculates the elevation at each pixel based
C on the tree center height and cone angle. Ground surface is
C assumedflat and horizontal at elev = 0.0.

SUBROUTINE ELEVA(ISHAD, IELEV, IDIM, NUM, ELEV,

& ALPHA, XI,X2,THGT, TDIA)

REAL ELTEMP, ELEV (-i0 :150,150) ,ALPHA, Xl (20000) ,X2 (20000) ,
THGT (20000) ,TDIA (20000) ,XX, YY

INTEGER IDIM, NUM, ITDIA, XlI, X22

C If (IELEV=I) then use elevations computed outside this program
C and skip this subroutine

IF(IELEV.GT.0.5) GO TO Ii0

C Initialize pixels at 0.0 elevation.

2O

DO 20 I= -10,IDIM

DO 20 J= I,IDIM

ELEV(I,J) = 0.0
CONTINUE

C If (ISHAD=0) then above initializations stand and skip
C the rest of this subroutine

IF (ISHAD.LT. 0 .5) GO TO Ii0

TANCON = TAN (ALPHA*6. 283/360)

C Iteration to compute elevation

DO I00 N=I,NUM

ITDIA -- TDIA(N)

DO 50 I=-ITDIA, ITDIA

DO 50 J=-ITDIA, ITDIA

C Find nearest integer pixel by truncating

Xll = XI(N) + I

X22 = X2(N) + J

IF(XlI.GT.IDIM .OR. XlI.LT.-10) GO TO 50

IF(X22.GT.IDIM .OR. X22.LT.I) GO TO 50
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C Compute elevation based on distance from tree center

ELTEMP -- THGT (N) - SQRT ( ((XlI-Xl (N)) **2)

((X22-X2 (N)) **2) )/TANCON

C For overlapping tree canopies, take highest canopy

C

5O

!00

Ii0

IF (ELTEMP .LT. ELEV (XlI, X22 ))
GO TO 50

ELSE

ELEV(XlI,X22) = ELTEMP
ENDIF

CONTINUE

CONTINUE

RETURN

END

THEN

C

C

C

Subroutine OUTEL prints the elevation of each pixel

SUBROUTINE OUTEL (IDIM, ELEV)

8OO

85O

87O

REAL ELEV (-I0 :150,150)
INTEGER IDIM

WRITE (ll, 800)

FORMAT (//, 2X, 'Pixel elevation in meters',/)

DO 850 J=l,30

WRITE(II,870) (ELEV(I,J),I=I,15)
CONTINUE

FOBMAT (15F6.2)
RETURN

END

C

C Subroutine REFLEC computes reflectance at each node based

C on superposition of trees on soil background.

C Variables:

C DIST SQ - square of distance from node to tree center

SUBROUTINE REFLEC(IDIM, NUM, XI,X2,TDIA, ETREF,STREF, SI,S2,

& TREF,RNODE, IBAND,PCTV, IVREF, IVDIA, VREF,VI,V2)

C

&

&

REAL Xl (20000) ,X2 (20000) ,TDIA (20000) ,ETREF (2) ,STREF (2) ,

TREF(2,20000),RNODE(2,150,150),DIST SQ, PCTV(150,150),

SECNDS, R (I) ,MBEF (2) ,VREF (150,150) ,V_,V2, SI, $2

INTEGER IDIM, NUM, INI/M,NR, IVREF, IVDIA, IXl, IX2

DOUBLE PRECISION SEED

SAVE SEED

SEED = SECNDS(0.0) + i0000.
NR= 1

Initialize percent vegetation

DO. 15 I = I,IDIM

DO 15 J = I, IDIM
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PCTV(I,J) = 0.
15 CONTINUE

C Soil distribution obained from the TURNINGBANDSmodel
C computed outside this program. Just read input here.

DO40 I=l, IDIM
READ(2,*)
RF-AD (2, *)
READ (2, *)

READ (2,*)

READ (2,*)

READ (2, *)

RF_AD(2, *)
READ (2, *)

READ (2, *)

READ (2, *)

(RNODE (i, I, J) ,J=

(RNODE (I, I, J) ,J=

(RNODE (i, I, J) ,J=

(RNODE (I, I, J) ,J=

(RNODE (I, I, J) ,J=

(RNODE (I, I, J) ,J=

(RNODE (i, I, J) ,J=

1,15)

16,30)

31,45)

46,60)

61,75)

76,90)

91,105)
(RNODE (i, I, J) ,J=106,120)

(RNODE (i, I, J) ,J=121,135)

(RNODE (I, I, J) ,J=136,150)

C Infrared soil reflectance linearly related to

4O

DO 40 J=I,IDIM

IF (RNODE (i, I, J) .LT. 0.05) THEN

RNODE (I, I, J) = 0.05
ENDIF

RNODE(2, I,J) = (SI*RNODE (I, I, J) )
CONTINUE

+ S2

visible reflectance

C If (IVREF.EQ.I) then read visible tree reflectance distribution

C from outside this program and assign reflectance at tree centers

200

IF (IVREF. GT. 0.5) THEN

DO 200 I=I,IDIM

READ(3,*) (VREF (I, J) ,J= 1,15)

READ(3,*) (VREF (I, J) ,J= 16,30)

READ(3,*) (VREF (I, J) ,J= 31,45)

READ(3,*) (VREF (I, J) ,J= 46,60)

READ(3,*) (VREF(I,J),J= 61,75)

READ(3,*) (VREF(I,J),J= 76,90)

READ(3,*) (VREF (I, J) ,J= 91,105)

READ (3, *) (VREF (I, J), J=106,120)

READ (3, *) (VREF (I, J), J=121,135)

READ (3, *) (VREF (I, J), J=136,150)
CONTINUE

DO 250 IN-I,NUM

IXI = Xl (IN)

C (can't handle negatives in some arrays)
IF(IXI.LT.I.0) GO TO 250

IX2 -- X2 (IN)

TREF (I, IN) = VREF (IXl, IX2)

C Assume IR tree reflectance logrithmicly related to VIS reflectance

TREF (2, IN) = (VI*TREF (I, IN) ) + V2

250 CONTINUE

GO TO 270
ENDIF
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C In general, generate tree reflectance (normal distribution) for

C each tree. Revision of 7/21/87 assumes linear relation (therefore

C same random relation) between visible and infrared reflectances.

C Therefore only one random number is generated for both reflectances.

C

6O

DO 60 IB = I,IBAND

DO 60 INUM = I, NUM

CALL GGNML (SEED, NR, R)
IB = 1

TREF(IB, INI/M) -- ETREF(IB) + (STREF(IB)*R(1))

MKEF (IB) _ MREF (IB) + TREF (IB, INUM)
IB=2

TREF(IB, INUM) = ETREF(IB) + (STREF(IB)*R(1))

MREF (IB) = MREF (IB) + TREF (IB, INUM)
CONTINUE

270 CONTINUE

C The next algorithm assigns tree reflectances to all grid

C nodes within the tree canopy area. Node coordinates are

C located at centers of unit pixels.

C If tree diameter is equal to one grid, then pixel reflectance

C equals tree reflectance only at that grid; skip following

C time-consuming calculation

290

295

IF(IVDIA.GT.0.5) THEN

DO 295 I=I,NUM

IXl = XI(I)

IF(IXI.LT.I.0) GO TO 295

IX2 = X2(I)

DO 290 IB=I,IBAND

RNODE (IB, IXl, IX2) = TREF (IB, I)
CONTINUE

PCTV(IXI,IX2) = 1.0
CONTINUE

GO TO 280

ENDIF

DO I0 I = I,NUM

Xll = Xl (I)

X22 = X2 (I)

DO 20 J = I,IDIM

DO 20 K = 1,1DIM
ZI= J

Z2 =K

DIST SQ = (Xll - Zl)**2 + (X22 - Z2)*'2

IF ((TDIA(I)/2).GE.SQRT(DIST SQ)) THEN

C It's assumed that reflectance of the overlap portion

C of two trees is equal to the latter generated tree.

5O

DO 50 IB=I,IBAND

RNODE (IB, J,K) = TREF (IB, I)

CONTINUE

PCTV(J,K) = 1.0
ENDIF
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C

20 CONTINUE
10 CONTINUE
280 RETURN

END

C

C Subroutine to compute shadows cast by trees. Sun is

C assumed directly from west (left of page).

SUBROUTINE SHADOW(ISHAD, IDIM, ALPHA, THETA, ETHGT, STHGT,

& RNODE,ELEV, IBAND,PCTS,PCTV, PCTVI,PCTGS)

REAL ALPHA, THETA, ETHGT, STHGT, RNODE(2,150,!50),

ELEV(-10:I50,150),TANCON, TANSUN, PCTS(150,150),

PCTV(150,150),PCTVI(150,150),PCTGS(150,150)

INTEGER ISHAD, IMAX, IBAND

C Initialize variables.

I00

DO 100 I=I,IDIM

DO 100 J=I,IDIM

PCTS(I,J) = 0.

PCTVI(I,J) = PCTV(I,J)
PCTGS(I,J) = 0.

CONTINUE

C If there are no shadows (ISHAD = 0.0), above initializations

C stand and rest of algorithm can be skipped.

IF(ISHAD.LT.0.5) GO TO 60

TANCON = TAN (ALPHA*6. 283/360)

TANSUN = TAN ((90-THETA) *6. 283/360)

IMAX = (ETHGT + (5*STHGT))/TANSUN

DO 5O J =

DO 50

DO

1, IDIM

I = IDIM, 1,-1

40 IN = I,IMAX

IF((I-IN).LT.-10) GO TO 40

IF((((ELEV((I-IN),J)) - ELEV (I, J) )/IN) .GE.TANSUN)

RNODE(I,I,J) = 0.0

RNODE (2, I, J) = 0.0

C Initialize percent shadow

4O

5O

6O

PCTS (I, J) = i. 0

IF (PCTV (I, J) .GE. 0.95)

PCTVI(I,J) = 0.0

ELSE

PCTGS(I,J) = 1.0

ENDIF

END IF

CONTINUE

CONTINUE

RETURN

END

THEN

THEN
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C

C
C This subroutine prints the reflectances at each

C and a summary of the statistics

805

SUBROUTINE OUTREF (IDIM, NUM, RNODE, IA,
IBAND, PCTV, PCTS )

REAL RNODE (2,150,150) ,

LAG, DIST, PCTV (150,150) ,PCTS (150,150)

INTEGER IDIM, NUM, IBAND, IA, ITAU, IMAX, IMIN

ITAU = IDIM/IA

IMAX = 15

IMIN = MIN (IMAX, ITAU)

WRITE (ii, 805) IA

FORMAT (//, '

node

&

&........ '/, 26X, 'Level of aggregation =' ,I4)

DO 810 IB = I,IBAND

WRITE(If, 815) IB

815 FORMAT(//,2X, 'Pixel reflectance:
DO 830 J=I,IMIN

WRITE (II, 850) (RNODE(IB, I,J),

830 CONTINUE

850 FORMAT (15F6.2)

810 CONTINUE
WRITE (ii, 845) 'Percent vegetation'

845 FORMAT (//, 2X, A,/)

DO 840 J =I,IMIN

WR/TE(II,850) (PCTV(I,J),I=I,IMIN)

840 CONTINUE

WRITE(II,845) 'Percent shadow'

DO 842 J =I,IMIN

WRITE (II, 850) (PCTS(I,J),I=I,IMIN)

842 CONTINUE

Band number =', 14, /)

I=l, IMIN)

RETURN

END

C
C This subroutine

C number of trees

&

&

860

&

870

82O

writes inputted storm parameters and

generated.

SUBROUTINE OUTPAR (LAM, ALPHA, THETA, ETHGT, STHGT,
ETREF, STREF, IBAND, NUM)

REAL LAM, ALPHA, THETA, ETHGT, STHGT, ETREF (2) ,STREF (2)

INTEGER IBAND, NUM

WRITE (II, 860) 'CANOPY MODEL: VERSION ii',
'LAMB','ALPH' 'THET','E[THGT]','S[THGT] '
'E[REF VIS]','S[REF VIS]','E[REF_IR]','SiREF_IR] '

FORMAT (//, 2X,A,/, 2X, A, 2X,A, 2X, A,2X, A, 2X,A, IX, A, 2X,A, 2X,A, 2X,A)

WRITE (Ii, 870) LAM, ALPHA, THETA, ETHGT, STHGT,

(ETREF (IB), STREF (IB), IB=I, IBAND)

FORMAT (/, F6.3, 3F6.1, FI0.3,FII. 3, FI2.3,F10.3,FII. 3)

WRITE (Ii, 820) NUM

FORMAT(//,2X,'Number of trees --',X, IS)

RETURN

END
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C This subroutine computes subpixel components
C and arranges output for use in the DRAW package
C of the microVAX II.

SUBROUTINE OUTPLOT (IDIM, RNODE, IA, IAG,

I_ ,PCTV, PCTVI, PCTVS ,PCTS ,PCTGS, ELEV)

REAL RNODE (2,150,150) ,LAG, DIST, PCTV (150,150) ,

PCTS (150,150) ,PCTVI (150,150) ,PCTGS (150,150) ,

PCTG (150,150) ,PCTGI (150,150) ,PCTVS (150,150) ,

ELEV (-I0 :150,150) ,NVI (150,150)

INTEGER IDIM, IA, IAG, ITAU, IMAX, IM_IN, IPLOTB
ITAU = IDIM/IA

IMAX = 15

IMIN = MIN(IMAX, ITAU)

C Initialize variables

50

DO 50 J = I,ITAU

DO 50 I = i, ITAU

PCTVS(I,J) = 0.

PCTG (I, J) = 0.

PCTGI(I,J) = 0.

NVI (I, J) = 0.
CONTINUE

Write header for draw files (once)

970

&

&

IF(IA.GT.I) GO TO 960

IPLOTB = 12

WRITE(13,970) IPLOTB

FOBMAT('CANOPY MODEL: VERSION 14',

/,I4,/,'VIS REF',/,'INF REF',/,'M',/,'MI',/,'MS'
/,'MS/M',/,TG' ,/,'GI' ,/7'GS',/,'S' ,/,'NVI')

,/, 'MI/M',

C Skip printing for aggregations less than 3

960 IF (IA.LT.3) GO TO 980

C Print file or reflectance and percent vegetation

C for last aggregation.

WRITE (13,700) IA

700 FORMAT(/,' Level of aggregation is', I4,/)

DO i00 J=l, ITAU

DO I00 I=l, ITAU

PCTVS (I, J) = PCTS (I, J) - PCTGS (I, J)

PCTVI (I, J) = PCTV(I, J) - PCTVS (I, J)

PCTG(I,J) = 1.0 - PCTV(I,J)

PCTGI (I, J) = PCTG (I, J) - PCTGS (I, J)

RSUM = RNODE (2, I, J) + KNODE (I, I, J)

IF (RSUM.EQ. 0.0) THEN

NVI(I,J) = 0.0
GO TO 150

ENDIF
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NVI(I,J) = (RNODE (2, I, J) - KNODE(I,I,J))/RSUM

C Correction for zero-divide (at low aggregations)

150 IF (PCTV(I,J) .LT.0. 0001) THEN

PCTV(I,J) = .0001

ENDIF

&

&

&

&

&

100

200

WRITE (13,200)

CONTINUE

FORMAT (12F8.3)

100*RNODE (I, I, J), 100*RNODE (2, I, J),

100*PCTV (I, J), 100*PCTVI (I, J),

100*PCTVS (I, J), 100*PCTV! (I, J)/PCTV (I, J),

100*PCTVS (I, J)/PCTV (I, J) ,!00*PCTG (I, J) ,

100*PCTGI (I, J) ,100*PCTGS (I, J) ,

100*PCTS (I, J), 100*NVI (I, J)

980 RETURN

END

C Subroutine to summarize statistics of the subpixel percentages.

SUBROUTINE OUTPCT(IDIM, IA, RNODE,PCTV, PCTVI,PCTS,PCTGS)

&

REAL PV, PVI, PVS, PG, PGS, PGI, PS, PCTV (150,150) ,PCTS (150,150) ,
PCTVI (150,150) ,PCTGS (150,150) ,RNODE (2,150,150) ,NNVI

INTEGER IDIM, IA, IMAX, IMIN

IMAX = 15

ITAU = IDIM/IA

IMIN = MIN(IMAX, ITAU)

PV = 0.

PVI= 0.

PGS = 0.

=0.

= 0.

PS = 0.

DO

&

100 CONTINUE

100 I=l, ITAU

DO i00 J=I,ITAU

PV = PV + PCTV(I,J)/(ITAU**2)

PVI = PVI + PCTVI (I, J) / (ITAU**2)

PGS = PGS + PCTGS (I,J) / (ITAU**2)

R1 = Rl + RNODE(I,I,J)/(ITAU**2)

R2 = R2 + RNODE(2,I,J)/(ITAU**2)

PS = PS + PCTS(I,J)/(ITAU**2)

IF((RNODE(2, I,J) + RNODE(I,I,J)).EQ.0.0) THEN
NNVI = 0.0

GO TO I00

ENDIF

NNVI = NNVI + ((RNODE (2, I, J) -RNODE (I, I, J) )/

(RNODE (2, I, J) +RNODE (I, I, J) ))/ (ITAU**2)

C Correction for zero divide
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&
210

&

200

IF (PV.LT.0. 0001)
PV = 0.0001

ENDIF

THEN

WRITE(I1,210) ' Subpixel component averages','Rl','R2.,
'M', 'MI', 'MS', 'MI/M', 'MS/M', 'G', 'GI', 'GS', 'S', 'NVI'

FORMAT(//, '
& ',/,A,/, 4X,A,4X,A,5X,A,4X,A,4X,
&A,2X,A,2X,A,5X,A,4X,A,4X,A,5X,A, 4X,A,//)

PG= I-PV
PGI = PG- PGS
WRITE(II,200) R1,R2,PV,PVI,PV-PVI,PVI/PV,(PV-PVI)/PV,

PG,PGI,PGS,PS,NNVI

FORMAT(2F6.3, 9F6.3, F7.2)
RETURN
END
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C
C
C
C
C
C
C
C
C
C

C

INVERSEPROCEDUREFORCASEII
(Program M_II. FOR)

Program to compute mean,st. dev., min, and max of a group of
data from a DRAWoutput file for a specified line of R1 and R2
in the red-IR scattergram, identified by slop A, intercept, B,
and Bandwidth BANDWIDTH.Program computes
estimate of percent vegetation cover, PM_EST,from simulations
and compares it to meanof actual percent cover, PM_MEAN.

REALRNODE(2) ,PMACT,BIGIR,SMALLIR,BIGVS,SMALLVS,
SMALLPM,BIGPM,

RIR SUM,MEANIR,SDEVVSSL,SDEVIRSL,
  Q_sUM, RVS_SUM, RVSSS_SUM,
BANDWIDTH, A, B, CVPARM (10 ),

PM EST_VS,PM EST IR, PARM, MACT(300),

PM--MEAN, PM_SDEV, PM_SUM, PM_SSQ, NUM
INTEGER NN, NUMPA_RS

OPEN (I0, FILE= 'M II. IN' ,STATUS= 'OLD ')
ASSIGN INPUT DRAW FILE TO FOR011

OPEN (12, FILE='M II .OUT' ,STATUS--'NEW' )
OPEN (I3,F ILE= 'M--IIL. OUT ',STATUS= 'NEW' )

m

SMALLIR = 500.0

SMALLVS = 500.0

SMALLPM = 500.0

NUM =0.0

RIR SUM = 0.0

RIRSQ SUM = 0.0
RVS S_ = 0.0

RVSSQ SUM = 0.0

PM_SS --o.o
PM SUM = 0.0

NN--0

C Read input parameters
READ (I0, *) NI/MPAIRS,A,B, BANDWIDTH, PARM

C Read sdev of soil line

READ (I0, *) SDEV_VSSL, SDEV_IRSL

C Skip header
READ (ii, 300) IPLOT

300 FORMAT(/,I4,////////////)

C Iterate for each data pair
DO i00 I -- I,NUMPAIRS

READ(II,*) (RNODE(K),K=I,2), (CVPARM(J),J=I,10)

PM ACT = CVPABM(PARM)

C Compute perpendlcular distance between a chosen point and
C the line RIR = A*RVIS + B

C

AP = TAN(-(3.142/2 - ATAN(A)))

BP = RNODE (2) - (AP*RNODE (I))

RVS = (B - BP)/(AP - A)

RIR = A*RVS + B

DIS =SQRT((RIR-RNODE(2))**2 + (RVS - RNODE(1))**2)

WRITE (5,*) AP,BP,KIR, RVS,DIS

IF (DIS.GT.BANDWIDTH) GO TO I00
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NUM= NUM + 1.0

NN-NN + i

MACT(NN) I PM ACT

C Sum IR data

RIR SUM = RIR SUM + RNODE (2)

RIRSQ_SUM -- RIRSQ_SUM + (RNODE (2) **2)
BIGIR = MAX (BIGIR, RNODE (2))

S_IR = MIN(SMALLIR, RNODE (2))
C Sum Visible data

RVS SUM = RVS SUM + RNODE(1)

RVSSQ_SUM = RVSSQ_SUM + (RNODE (I) **2)
BIGVS _ MAX(BIGVS,RNODE(1) )

SMALLVS - MIN (SMALLVS, RNODE (1 ))

C Sum percent canopy cover
PM SUM = PM SUM + PM ACT

PM--SSQ = PM--SSQ + PM--ACT**2

BIGPM = MAX (BI--GPM,PM_A_T)

S_M = MIN(SMALLPM, PM_ACT)
i00 CONTINUE

MEANIR = KIR SUM/NUM

SDEVIR -- SQRT( (KIRSQ_SUM - NUM* (MEANIR**2)) / (NUM-I))
MEANVS = RVS SUM/NUM

SDEVVS = SQR_( (RVSSQ_SUM - NUM* (MEANVS**2)) / (NUM-I))
PM MEAN -- PM SUM/NUM

PM--SDEV_ = SQRT ((PM_SSQ - NUM* (PM_MEAN**2)) / (NUM-1))

C Write input and output parameters
WRITE (12,210) 'NUM', 'A' , 'B', 'BANDWIDTH',NUM, A, B, BANDWIDTH

WRITE (5,210) 'NUM' ,'A' , 'B' , 'BANDWIDTH' ,NUM, A, B, BANDWIDTH

210 FORMAT (5X, A, 7X,A, 7X, A, 2X, A,/, F8.0, 2F8.3, FI0.3)

C Write summary of reflectance statistics
WRITE(12,200) 'BAND', 'MEAN','SDEV','SD/MN','MAX' 'M_IN'

I •

& 'IR' ,MEANIR, SDEVIR, SDEVIR/MEANIR, BIGIR, SMALLIR,

& 'VIS ',MEANVS, SDEVVS, SDEVVS/MEANVS, BIGVS, SMALLVS
WRITE(5,200) 'BAND', 'MEAN' 'SDEV' 'SD/MN' 'MAX' 'M_IN'

• I l • •

& 'IR', MEANIR, SDEVIR, SDEVIR/MEANIR, BIGIR, SMALLIR,

& 'VIS ',MF2eZVS, SDEVVS, SDEVVS/MEANVS, BIGVS, SMALLVS

200 FORMAT (/, 4X,A, 4X, A, 4X, A, 3X, A, 5X, A, 5X, A,//,

& 6X,A, 5F8.2,/, 5X,A, 5F8.2)

C Compute canopy cover using variances
C COMPUTE E{GI}

PM EST VS = I00"(I -

PM--EST--IR = i00" (i -

(SDEVVS/SDEV VSSL) )

(SDEVIR/SDEV_--IRSL) )

C Write summary of canopy cover statistics

WRITE(*,301) 'M ACT', 'SDEV', 'M EST(VIS)' 'M EST(IR)',

& PM_MEAN, PM_SDEV, PM_EST_VS, PM_EST_IR
WRITE(12,301) 'M ACT','SDEV','E[M] (VIS) ' 'ELM] (IR)'

& PM--MEAN, PM SDEV, PM EST VS, PM EST IR

301 FORMAT (/, 5X, A, 6X,--A,2X, A, 3X, A,/, 2FI_. 2, _FI2.2)-- --

DO 120 K=I,NN

WRITE (13,302) K, MACT(K), PM_EST_VS, PM_EST_IR
120 CONTINUE

302 FORMAT (I8, 3F8.2)

STOP

END
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C
C
C
C
C
C

C

INVERSEPROCEDUREFORCASEV, METHOD1
(VB2PARV02.FOR)

Estimates parameters from momentanalysis
Three unknowns, EM, ETA, AT

REALEM,EMMIN,EMMAX,DEM,VM,
& EGI,EGS,VGI,_MGS,CMGS_MIN,CMGS_MAX,DCMGS,DCM,
& AT,AT_M_IN,AT MAX,DAT,AP,
& YI, Y2,Y3,Y(3_,F,FMIN,Xl, X2,X3,
& ERGI(2) ,VRGI(2), SER(2), SVR(2), SCRICR2,RV(2),
& NDELTA,MSAM,CMGS_SAM,CMGS_MIN_INIT,CMGS_MAX_INIT,
& EMMIN INIT,EM MAXINiT,AT M_ININIT,AT MAX_INIT,
& FPKINT_I0), ATP_NT(Y0), WI,W2,W3,AI,A2,
& ETA,ETAMIN,ETA_MAX,DETA

INTEGERLEVE_, IDELTA

ASSIGNFOR010.DATMOMENT.DAT
OPEN(ii, FILE--'PARVL.IN' ,STATUS ='OLD ')

OPEN(12, FILE='PARV.OUT' ,STATUS ='NEW' )

C

C

C

C

READ(If,*) LEVEL, NDELTA, IDELTA

READ (ii, *) EM_MIN_INIT, EM MAX IN-IT

READ (Ii, *) AT MIN_INIT, AT_MAX_YNIT
READ(If,*) ETA MIN INIT, ETA MAX IN-IT

Weighting constant_ for minimizatio_

READ (Ii, *) WI, W2, W3

Read correlation coefficients

READ (II, *) AI,A2

READ (ll, *) A3,A4

READ (ii,*) A5,A6

DO 800 NDAT = 1,8

Read fixed parameters and sample moments

CALL READDAT (AP, M_SAM, CMGS_SAM, ERGI, VRGI, SER, SVR, SCRIR2 )
Initialize

EMF = I00.00

ATF = i00.00

CMGSF = I00.00

FMIN = I0000000000.00

EM MIN = EM MIN INIT

AT--MIN = AT--MIN--INIT

AT MAX = AT MAX INIT
ET_ _N --E_A _X--NINIT
ETA--MAX = ETA--MAX--INIT

460

440

M SAM = M SAM*0.0100

CMGS SAM = CMGS SAM*0.000100

WRITE(5,460) 'M SAMPLE =' M SAM, 'COV(M, GS) --' CMGS SAM

WRITE(12,460) 'M SAMPLE =',M SAM, 'COV(M, GS) =', CMGS_SAM
FORMAT (//, 2 (3X, A,F9.5) )

WRITE(5,440) 'EM','AT','ETA','CMGS','YI','Y2','Y3','FMIN'

WRITE(12,440) 'EM', 'AT', 'ETA', 'CMGS','YI','Y2','Y3','FMIN'

FORMAT (6X, A, 6X, A, 5X,A, 6X, A, 3 (10X,A) ,7X,A)
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Iterate over MAX and MIN values

DO 600 IT = 1,LEVEL

DEM = (EM_MAX - EM_M!N)/NDELTA
DAT = (AT MAX - AT MIN)/NDELTA

DETA = (E_A MAX - E--TAMIN)/NDELTA

EM = EM MIN

DO 500 IT1 = !,IDELTA
EM = EM + DEM

AT = AT MIN

DO 510 I-T2=1, IDELTA

AT = AT + DAT

ATPRNT (IT2) = AT
ETA = ETA MIN

DO 520 IT_=I,IDELTA

ETA = ETA + DETA

C Call minimization routine

CALL FUNCT(EM, AT, CMGS,Y,F,AP,ETA, ERGI,VRGI,

SER, SVR, SCRIR2,EGI,EGS,VM, VGI,RV, WI,W2,W3,
AI,A2,A3,A4,A5,A6, ITER)

FPRINT(IT3) = MIN(999.900,F)

IF (F.LT. FMIN) THEN
FMIN = F

EMF = EM

ATF = AT

CMGSF = CMGS

EGIF = EGI

EGSF = EGS

ETAF = ETA

Y1 = Y(1)

Y2 = Y(2)

Y3 = Y(3)
VMF = VM

VGIF - VGI

RVIF = RV(1)

RV2F = RV(2)

52O

510

5O0

430

ENDIF

CONTINUE

CONTINUE

CONTINUE

WRITE (5,430) E/qF,ATF,ETAF,CMGSF, YI,Y2,Y3,FMIN

WRITE (12,430) EMF,ATF,ETAF,CMGSF, YI,Y2,Y3,FMIN
FORMAT (3F8.5, FI0.5, 3 (X, FII. 6) ,X, FI0.6)

ITER = 0

Change MAX and MIN values

EM_MAX = EMF + 0.4D0* (EM_MAX - EM_MIN)

EM MIN = EMF - 0.4D0*(EM_MAX - EM MIN)
E/qMAX = EMF + DEM

EM MIN = EMF - DEM

IF_EM MIN.LT.0.00) THEN
EM M_N = 0.000

ENDIF

IF(EM MAX.GT.I.00) THEN
EM MAX = 1.000
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600

&
450

&

8OO

--.

ENDIF

AT MAX = ATF + 0.400"(AT MAX - AT MIN)

AT MIN = ATF - 0.400* (AT MAX - AT MIN)

IF_AT MIN.LT.0.00) THEN

AT M_IN = AT MiN INIT

ETA MAX = ETAF + 0. 400* (ETA MAX - ETA M_!N)

ETA--MIN = ETAF - 0. 400* (ETA--MAX - ETA--M_IN)

IF(E'TA MIN.LT.0.00) THEN

ETA M_IN = ETA MIN INIT

 NDIF - -
CONTINUE

WRITE(5,450) 'EM','EGI','AT','ETA','VM','VGI', 'CMGS','RVI',

'RV2 ',EMF, EGIF, ATF, ETAF, VMF, VGIF, CMGSF, RVlF, RV2F

WRITE (12,450) 'EM' , 'EGI' , 'AT' , 'ETA' , 'VM' , 'VGI' , 'CMGS' , 'RVI' ,

'RV2 ',EMF, EGIF, ATF, ETAF, VMF, VGIF, CMGSF, RVIF, RV2F

FORMAT (5X, A, 4X,A, 5X, A, 4X,A, 7X,A, 6X,A, 6X,A, 2 (7X,A),/, 4 (FT. 3),

2 (F9.6) ,FI0.6, 2FI0.3)

CONTINUE

STOP

END

SUBROUTINE FUNCT (F.M,AT, CMGS, Y, F, AP, ETA, ERGI, VRGI,

& SER, SVR, SCRIR2, EGI, EGS, VM, VGI, RV, WI, W2, W3,

& AI, A2, A3, A4,A5, A6, ITER)

REAL Y(3) ,ER(2) ,VR(2) ,CRIR2,EM, EGS, EGI,

& VM, VGS, VGI, Wl, W2, W3, AI, A2, A3, A4, A5, A6,

& ERGI (2) ,VRGI (2) ,RV (2) ,CMGS, SER (2) ,SVR (2) ,SCRIR2,

& AP, F, ETA, AT, AST, DUM, CORR, CST

EGI -- (i.00 - EM)**(ETA + 1.00)
EGS -- 1.00 - EM - EGI

EGSGI = 1 - EM

X = 2.3/((AP/AT)**I.50)

VM = (X*EGSGI) +

(EGSGI**2.00) * ((EGSGI** (-AT/AP)) * (I. 00-X) -I. 00)

AST = AT*(1.00 + ETA)

X = 2. 300/( (AP/AST)**I. 500)

VGI = (X*EGI) +

(EGI**2.00)*((EGI**(-AST/AP))*(I.00 - X) - 1.00)

Compute correlation BT/ M
IF (EM.LE. 0. i0) THEN

A1 = A1

A2 = A2

GO TO 160

ENDIF

IF (EM. LE. 0.65) THEN
A1 = A3

A2 = A4

GO TO 160

ENDIF

A1 = A5

A2 = A6

160 CORR = A1 - EM*A2

AND GS
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ESTIMATE CORRELATION BY ITERATION

EMIN = i000

IF (CORR. GE. 0.0) THEN

CMGS = 0.0

ELSE

CMGS = -. 03

ENDIF

C

C Option to compute CMGS by empirical formula (not used)
C IF (EM.GT. 0.48.AND. EM.LT. 0.81) THEN
C E = EM*I00

C CMGS = 51.34 - 1.957"E + 0.0176"(E*-2) + 0.00003092-(E*-3)
C CMGS = CMGS/10000

C GO TO 355

C ENDIF

C Solution by solving quadratic expression

35O

355

&

DO 350 IC = 1,300

CMGS = CMGS + 0.0001

ELEFT = (CMGS**2)

- (VGI-VM) * (2*VM* (CORR**2))/2

ERIGHT = -CMGS* (2*VM* (CORR**2))

DIFF = ABS (ELEFT - ERIGHT)

EMIN I MIN (DIFF, EMIN)

IF (EMIN.EQ.DIFF) THEN
CM ACT = CMGS

ENDIF

CONTINUE

CMGS = CM ACT

CONTINUE

C Compute minimization bt/ theoretical and sample reflecctance moments
DO I00 59=1,2

RV(M) = (SER(M) - EGI*ERGI (M))/EM

IF (RV (M). LT. 0.0) THEN
RV(M) = 0.00

ENDIF

&

&

!00

VR(M) = (RV(M) **2)*VM + (EGI**2)*VRGI (M)

+ (ERGI (M) **2) *VGI + VGI*VRGI (M)

- 2*RV(M) *ERGI (M) * (VM + CMGS)
CONTINUE

CRIR2 = RV(1)*RV(2)*VM

- (RV(1)*ERGI(2) + RV(2)*ERGI(1))*(VM + CMGS)

+ (EGI**2)*VRGI (I) + VGI* (VRGI (i) + ERGI (I) *ERGI (2))

C

C

C

C

C

C
&

410

420

NN=NN+ 1

IF (NN. EQ. i0) THEN

WRITE(5,420) RV(1),RV(2),VR(1),VR(2),CRIR2

WRITE(5,420) (Y(J),J=I,5), VM, F

WRITE(5,410) 'RVI','RV2','EM', 'AT','CMGS',

RV(1), RV (2), EM, AT, CMGS

FORMAT (7X, A, 7X,A, 8X,A, 8X, A, 6X,A,/, 4FI0.3, FI0.6)

FORMAT (7El0.2)
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C
C

C

C

NN=0
ENDIF

Y(1) = (VR(1)/SVR(1) -1)*'2
Y(2) = (VR(2)/SVR(2) -1)*'2
Y(3) = (CRIR2/SCRIR2- 1)*'2
F = (WI*Y(1)) + (W2*Y(2)) +

WRITE (5,420) (Y (J), J=l, 3), F

RETURN

END

(W3*Y (3))

SUBROUTINE READDAT (AP, M SAM, CMGS_SAM,
& ERGI, VRGI, SER, SVR, SCRIR2 )

REAL AP, ERGI (2) ,VRGI (2) ,SER(2) ,SVR(2) ,SCRICR2,

& CRIR2, M_SAM, CMGS_SAM
INTEGER IND

IF(IND.GT.0) GO TO I00

Read fixed parameters

READ (ll, *) AP

READ (i0,*) ERGI (i), ERGI (2), VRGI (i), VRGI (2)

Read sample moments

i00 READ(10,*) M_SAM, CMGS_SAM, SER(1),SER(2),SVR(1),SVR(2),SCRIR2

IND=l

RETURN

END
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C
C
C
C
C
C
C
C
C

INVERSEPROCEDUREFORCASEV, METHOD2

a.) ESTIMATE SOIL BACKGROUND COVER, GI

(VBI G V.FOR)

Program to compute mean, st. dev., min, and max of a DRAW output

file for a specified line of R1 and R2 and also compute

estimate of percent ILLUMINATED GROUND cover, PGIV_EST, for Case V

simulations and compare it to mean of actual percent cover, PGIV_MEAN.

REAL RNODE (2) ,PGIV ACT, BIGIR, SMALLIR, BIGVS, SMgILLVS,

& SMALLPGIV, BIGPGIV,

& RIR SUM, MEANIR, SDEV_VSSL, SDEV IRSL,

R_RS-QSUM,RVS_SUM,MEANVS, RVSS__SUM,
& BANDWYDTH, A, B, CVPARM (i0),

& PGIV EST VS, PGIV_EST_IR, PARM,

& PGIV--_MEAN, PGIV_SDEV, PGIV_SUM, PGIV_SSQ, NUM,
MeT (100),_STVS,MESTIR

INTEGER NUMPAIRS, NN

OPEN (I0,FILE= 'G V. IN ',STATUS = 'OLD ')
C ASSIGN INPUT FILE TO FOR011

OPEN (12, FILE= 'G V. OUT ',STATUS= 'NEW' )

OPEN (13, FILE= 'G VL.OUT' ,STATUS= 'NEW' )
SMALLIR = 500.0

SMALLVS = 500.0

SMALLPGIV = 500.0

NUM =0.0

RIR SUM = 0.0

RIRSQ SUM = 0.0
RVS SUM = 0.0

RVSSQ_SUM = 0.0

PGIV_SSQ = 0.0
PGIV SUM = 0.0

NN=--0

C Read input parameters

READ (I0, *) N[R4PAIRS,A, B, BANDWIDTH, PARM
C Read sdev of soil line and ETA

READ (i0, *) SDEV_VSSL, SDEV_IRSL
READ (I0, *) ETA

C Skip header

READ (ll, 300) IPLOT

300 FORMAT(/,I4,////////////)

C Iterate for each data pair

DO I00 I - I,NUMPAIRS
READ(If,*) (RNODE(K),K=I,2), (CVPARM(J),J=I,10)

PGIV ACT = CVPARM (PARM)

C Compute perpendicular distance between a chosen point and
C the line RIR = A*RVIS + B

AP = TAN(-(3.142/2 - ATAN(A)))

BP = RNODE (2) - (AP*RNODE (I))
RVS = (B - BP)/(AP - A)

RIR = A*RVS + B

DIS =SQRT ((RIR-RNODE (2))*'2 + (RVS - RNODE (I)) **2)

C WRITE (5,*) AP,BP,RIR, RVS,DIS

IF (DIS.GT.BANDWIDTH) GO TO i00
NUM = NX3M + 1.0

NN=NN+ I

MACT(NN) = CVPARM(1)
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C Sum IR data

RIR SUM = KIR SUM + RNODE(2)

RIRSQ_SUM = RIRSQ_SUM + (RNODE (2) **2)

BIGIR = MAX (BIGIR, RNODE (2))

S_IR = MIN (SMALLIR, RNODE (2))

C Sum Visible data

RVS SUM = RVS SUM + RNODE (I)

RVSSQ_SUM = RVSSQ_SUM + (RNODE (1) **2)
BIGVS = MAX (BIGVS, KNODE (I))

SMALLVS = MIN(SMALLVS,RNODE (I))

C Sum percent canopy cover
PGIV SUM = PGIV SUM + PGIV ACT

PGIV--SSQ = PGIV--SSQ + PGIV--ACT**2

BIGPG--IV = MAX (BIGPGIV, PGIV_A_T)

SMALLPGIV = MIN (SMALLPGIV, PGIV_ACT)

I00 CONTINUE

MEANIR = RIR SUM/NUM

SDEVIR = SQRT( (RIRSQ_SUM - NUM* (MEANIR**2)) / (NUM-I))

MEANVS _ RVS SUM/NUM

SDEVVS = SQR_( (RVSSQ SUM - MUM* (MEANVS**2)) / (NUM-I))

PGrV MEAN = PGIV SUM/NUM

PGIV--SDEV = SQRT_(PGIV_SSQ - NUM* (PGIV_MEAN**2)) / (NUM-I))

C Write input and output parameters

WRITE (12,210) 'NUM', 'A' , 'B' , 'BANDWIDTH',NUM, A, B, BANDWIDTH

WRITE (5,210) 'NUM' , 'A' , 'B' , 'BANDWIDTH' ,NUM, A, B, BANDWIDTH

210 FORMAT (5X,A, 7X,A, 7X,A, 2X, A,/, F8.0, 2F8.3, FI0.3)

C Write summary of reflectance statistics

WRITE(12,200) 'BAND', 'MEAN','SDEV','SD/MN','MAX' 'MIN'

& 'IR' ,MEANIR, SDEVIR, SDEVIR/MEANIR, BIGIR, SMALLIR,

& 'VIS ', MEANVS, SDEWS, SDEVVS/MEANVS, BIGVS, SMALLVS

WRITE(5,200) 'BAND', 'MEAN','SDEV','SD/MN','MAX' 'MIN'
l •

& 'IR' ,MEANIR, SDEVIR, SDEVIR/MEANIR, BIGIR, SMALLIR,

& 'VIS ', MEANVS, SDEVVS, SDEWS/MEANVS, BIGVS, SMALLVS

200 FORMAT (/, 4X, A, 4X, A, 4X, A, 3X, A, 5X, A, 5X, A, //,

& 6X,A, 5F8.2,/, 5X,A, 5F8.2)

C Compute canopy cover using variances

C COMPUTE E{GI}

XGIVS = (SDEVVS/SDEV_VSSL)

XGIIR = (SDEVIR/SDEV_IRSL)

PGIV EST VS = I00" (XGIVS)

PGIV EST IR = i00" (XGIIR)

C Compute M based on assumed value of ETA

MESTVS = i00" (I - (XGIVS** (1/(ETA+l) ) ) )

MESTIR = I00" (I - (XGIIR** (1/(ETA+l) ) ) )

C Write summary of canopy cover statistics

WRITE(5,301) 'GI ACT','SDEV','G EST(VIS)','G EST(IR)',

& PGYV MEAN, PGIV_SDEV, PGIV EST--VS, PGIV EST_IR

WRITE(12,301) 'GI A--CT','SDEV','E[GI] (VI_)',TE[GI] (IR) '

& PGIV MEAN, PGIV_SDEV, PGIV_EST_VS, PGIV_EST_IR
301 FORMAT (/, 5X, A, 6X,A, 2X, A, 3X, A,/, 2FI0.2, 2F12.2)

DO 130 J=I,NN

WRITE (13,430) J, MACT (J) ,MESTVS,MESTIR

430 FORMAT (I8, 4F8.2 )

130 CONTINUE

STOP

END
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C

C

C

C

C

C

C

C
C

C

C

INVERSE PROCEDURE FOR CASE V• METHOD 2

b.) ESTIMATE ETA

(ETA.FOR)

Program to estimate ETA for large S by selecting
four conditional lines.

Use input from M II.FOR to obtain R(I) and GI(I),
average reflectance of Soil Line.

RSOIL is

REAL ETA, ETA_INIT,M(4)•GI(4)•GS(4),R(4),RSOIL,
LHS,RHS

OPEN(!2,FILE='ETA.IN',STATUS='OLD')
OPEN(13•FILE='ETA.OUT',STATUS='NEW')

READ(12,*) RSOIL

READ(12•*) (R(I),I=I,4)

READ(12•*) (GI(I)•I=I,4)

READ(12,*) NETA, ETA_INIT, DEL_ETA
ETA = ETA INIT

m

400

WRITE (5,400) 'A' , 'B' , 'C' , 'D' , 'ETA' ,'A-C' , 'B-D' , 'LHS-RHS'
WRITE(13,400) 'A' 'B' 'C' 'D' 'ETA' 'A-C' 'B-D' 'LHS-RHS'

FORMAT (4 (6X,A) ,3 (6X, A) ,2X,A,/)

Iterate over ETA

DO i00 J=I,NETA
ETA = ETA + DEL ETA

C Compute GS and M
DO ii0 I=I,4

M(I) = i. 0 -

GS(I) = 1.0 -

110 CONTINUE

C Compute LHS

A = ((R(1)/M(1) )

& ((GS (i)/M (I))

B = ((R(3)/M(3) )

& ((GS (3)/M(3) )
LHS = A- B

C Compute RHS
C = (((GI (i)/M(1) )

& ((GS (I)/M(1) )
D = (((GI (3)/M(3) )

& ((GS (3)/M(3) )
RHS _C-D

( (GI (I)) ** (I/(ETA+I.0) ))

M(I) - GI(I)

- (R(2)/M(2) )) /

- (GS (2)/M(2) ))

- (R(4)/M(4) ))/

- (GS (4)/M(4) ))

- (GI (2)/M(2) ))/

- (GS (2)/M(2) )))*RSOIL

- (GI (4)/M(4) ))/

- (GS (4)/M(4) )))*RSOIL

i00

410

DIFFI = A-C

DIFF2 = B-D

QUO = LHS/RHS

WRITE (5,410) A, B, C, D, ETA, DIFFI ,DIFF2, (LHS-RHS)

WRITE (13• 410) A, B, C, D, ETA, DIFFI,DIFF2, (LHS-RHS)

CONTINUE

FORMAT (4 (X, F6. i) ,4 (X, FS. 4) )
STOP

END
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C

C

C

C

C

C

C

INVERSE PROCEDURE FOR BEAVER CREEK

a. ) ESTIMATE BULK PARAMETERS FOR ENTIRE SCENE

(M BCA. FOR)

Estimates parameters of entire data set from moment analysis

8 unknowns, M, GI, GS, RVRED, RVIR, RSRED, RSIR, RGRED, RGIR

REAL M, GI, GS, RVRED, RVIR, RSRED, RSIR, RGRED, RGIR, SDGRED, SDGIR,
& TIME, REF (5),

& RIR_SUM, MEANIR, MAXIR, MINIR, RIRSQ_SUM,

& RRED_SUM, MEANRED, MAXRED, MINRED, RRED SQ_SUM,
& BANDWIDTH, A, B, VABRED, VARIR, F1, AETA

INTEGER N, NUM, II, 12, NREF, NDAT

ASSIGN FOR010.DAT BC623B2.0UT

OPEN (ii, FILE= 'M BC. IN' ,STATUS =' OLD ')
OPEN(12, FILE='M--BC.OUT', STATUS ='NEW' )

OPEN (13, FILE='_L BC.OUT', STATUS='NEW' )

442

NS = 7

WRITE(13,442) 'M BC, SOIL LINE',NS,'NUM','TIME',
& 'BL_' , 'GRN' , 'RED', 'NIR' , 'TMP'

FORMAT (2X,A,/, I4, 7 (/, 2X,A) )
MINIR = 500

MINRED = 500

NUM =0

RIR SUM = 0

RIRSQ SUM = 0
RRED SUM = 0

RREDSQ_SUM = 0

Read fixed parameters and soil

READ (ii,*) NREF

READ (ii,*) NDAT

READ (Ii,*) If,12

READ (Ii, *) ALPHA, _

READ (ii,*) F1, AETA

READ (Ii, *) RGRED, RGIR, SDGRED, SDGIR

READ (II, *) A, B, BANDWIDTH

line parameters

Skip header
READ(10,*)

READ(10,*) ICOL

DO i00 I=I,ICOL

READ(10,*)
I00 CONTINUE

Read reflectance data

DO ii0 I=I,NDAT

READ(10,*) N, TIME, (REF(J),J=I,NREF)

C Compute conditional moments of arbitrary line, A*RRED + B

C Compute linear relation between RIR and RVS, RIR = A*RVIS + B
C Select data pairs
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C NewVersion
AP = TAN(-(3.142/2-ATAN(A)) )

BP m REF(I2) - (AP*REF(II))

RVS = (B-BP) / (AP-A)

RIR = A*RVS + B

DIS = SQRT ((RIR-REF (I2)) **2 + (RVS-REF (I!))*'2)

IF (DIS.GT.BANDWIDTH) GO TO Ii0

NUM = NUM + 1

C WRITE(13,441) NUM, TIME, (REF(K) ,K=I,NREF)

441 FORMAT (3X, I5, 2X,FI0.4, 5 (X, F6.2) )
C Sum IR data

RIR SUM = RIR SUM + REF(I2)

RIRSQ_SUM = RIRSQ_SUM + (REF (I2) **2)
MAXIR = MAX(MAXIR, REF (12))

MINIR = M_N(MINIR, REF (I2))

C Sum Visible data

RRED SUM = RRED SUM + REF(II)

RREDS--Q_SUM = RREDSQ_SUM + (REF(II)**2)

MAXRED = MAX(MAXRED ,REF(I1))

MINRED = MIN(MINRED,REF(II) )
110 CONT INUE

MEANIR = R!R SUM/NUM

SDEVIR = SQRT(RIRSQ SUM/NUM- (MEANIR**2))
MEANKED = RRED SUM/NUM

SDEVRED = SQRT(RREDSQ_SUM/NUM - (MEA/qRED**2))

C Write input and output of conditional line parameters

&

&
210

&

&

&

200

&

C

WRITE(12,210) 'NUM' 'A','B' 'BANDWIDTH','E[GI RED]' 'E[GI IR]'
F • -- f -- •

& 'SD[GI RED] ' 'SD[GI IR] ',NUM, A, B, BANDWIDTH, RGRED,RGIR,

& SDGRED, SDGIR

WRITE(5,210) 'NUM','A','B','BANDWIDTH','E[GI RED] ', 'E[GI IR]',

'SD [GI_RED] ', 'SD [GI_IR] ',NUM, A, B, BANDWIDTH, RGRED, RGIR, --

SDGRED, SDGIR
FORMAT (5X, A, 7X, A, 7X,A, 2X, A, X, A, 2X,A, X,A, X,A,/,

I8,2F8.2,FI0.3, 4F10.3)

WRITE(12,200) 'BAND', 'MEAN','SDEV','SD/MN','MAX','M_IN' 'ETA'
f f

& 'IR' ,MEANIR, SDEVIR, SDEVIR/MEANIR, MAXIR, MINIR, AETA,

& 'RED ',MEANRED, SDEVRED, SDEVRED/MEANRED, MAXRED ,MINRED

WRITE(5,200) 'BAND', 'MEAN','SDEV','SD/MN','MAX' 'M_IN' 'ETA'• • t

'IR' ,MEANIR, SDEVIR, SDEVIR/MEANIR, MAXIR, MINIR, AETA,

'RED ',MEANRED, SDEVRED, SDEVRED/MEANRED, MAXRED, MINRED

FORMAT (/, 4X,A, 4X,A, 4X,A, 3X,A, 5X,A, 5X,A, 5X,A,//,

6X,A, 6F8.3,/, 5X,A, 5F8.3)

C Call minimization routine

CALL EST (IB, AETA, F1, RGRED, RGIR, SDGRED, SDGIR, MEANRED, MEANIR,

& SDEVRED, SDEVIR, M, GI, GS,

& RVRED, RVIR, RSRED, RSIR)

C Write estimate values

WRITE(5,450) 'M' 'GI' 'GS' 'RV RED' 'RV IR' 'RS RED' 'RS IR'
P f f f • J •

& M, GI, GS, RVRED, RVIR, RSRED, RSIR

WRITE(12,450) 'M','GI','GS','RV RED','RV IR','RS RED','RS IR',

& M, GI, GS, RVRED, RVIR, RSRED,RSIR -- -- --

450 FORMAT (/, 9X,A, 8X, A, 8X,A, 4X, A, 5X, A, 4X, A, 5X, A,/, 3 (F!0.3) ,
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&

STOP
END

2(FI0.3) , 2FI0.3)

5OO

SUBROUTINEEST(IB, AETA,F1,RGRED,RG!R,SDGRED,SDGIR,MEANRED,MEANIR,
& SDEVRED,SDEVIR,M,GI, GS,
& RVRED,RVIR,RSRED,RSIR)

REALAETA,F1,RGRED,RGIR,SDGRED,SDGIR,MEANRED,MEANIR,SDEVRED,
& SDEVIR,M,GI, GS,
& RVRED,RVIR,RSRED,RSIR

GI = 0.00

DIFMIN:=I00000.

DO 500 I=i,99
GI = GI + 0.01

EXP = 1.0/(I.0 + AETA)

M = 1.0 - GI**(EXP)
GS = 1.0 - GI - M

RVRED -- (MEANRED - (GI*RGRED)) / (M + (FI*GS))

RVIR = (MEANIR - (GI*RGIR)) / (M + (FI*GS))
VARRED = SDEVRED** 2

VARIR = SDEVIR**2

VARGRED = SDGRED**2

VARGIR = SDGIR**2

VAR IR EST = (GI**2) *VARGIR + ( ((RVRED-RGRED) / (RVIR-RGIR)) **2)

* ((VARRED**2) - (GI**2)*VARGRED)

DIFF =- ABS (VAB/R - VAR IR EST)

DIFMIN = MIN (DIFF, DIFMIN)

IF (DIFF.EQ.DIFMIN) THEN
GI EST = GI

EM EST = M

GS EST = GS
RVRED EST = RVRED

RVIR EST = RVIR

ENDIF

CONTINUE

GI = GI EST

M = EM EST

GS = GS EST

RVRED -- RVRED EST

RVIR = RVIR EST
RETURN

END
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INVERSE PROCEDURE FOR BEAVER CREEK

b. ) ESTIMATE BULK PARAMETERS FOR EACH

(M_BC2. FOR)

PIXEL

Estimates M directly for each pixel in a conditional parallel

Assumes Rgs = 0.0

REAL M, GI, RVRED, RVIR, RGRED, RGIR,

& TIME, REF (5),

& BANDWIDTH, A, B, VARRED, VARIR, F1, AETA

INTEGER N, NUM, II,I2,NREF,NDAT

ASSIGN FOR010.DAT BC623B3A.OUT

OPEN(II, FILE='M BC2.IN',STATUS ='OLD')

OPEN(12, FILE='M BC2.0UT',STATUS ='NEW')

NS = 7

NUM = 0

Read fixed parameters and soil

READ (Ii, *) NIREF

READ (II, *) NDAT
READ (Ii, *) II, I2

READ (II,*) ALPHA, _

READ (II,*) FI, AETA

READ (II, *)

READ (Ii, *)

READ (ll,*)

line parameters

RGRED, RGIR, SDGRED, SDGIR

A, B, BANDWIDTH

RVRED, RVIR

line

C

i00

Skip header
READ (I0,*)

READ (i0, *) ICOL

DO I00 I=l, ICOL

READ (I0,*)

CONTINUE
NNCOL = 9

WRITE(5,*) 'M BC2 ESTIMATES'

WRITE (5, *) NNCOL

WRITE(5,450) 'N','TIME','RED','IR','E[M]','E[GI]','E[GS]',

& 'Rg[RED] ', 'Rg[IR] '

WIRITE(12,*) 'M BC2 ESTIMATES'
WRITE (12,*) NNCOL

WRITE(12,450) 'N','TIME','RED','IR','E[M] ','E[GI] ','E[GS]',

'Rg[RED] ', 'Rg[IR] '
FORMAT (7X, A,/, 4X,A,/, 5X,A,/, 6X,A,/, 4X,A,/, 3X,A,/, 3X,

A,/, X,A,/, 2X, A)
Read reflectance data

&

450

&

DO Ii0 I=I,NDAT

READ(10,*) N, TIME, (REF(J),J=I,NREF)

RED = REF(3)

RIR = REF (4)
EM = 0.0

DIF MIN=500

DO 120 J=l,100
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EM= EM+ 0.01
RIR TEST= (ALPHA*RED)+ ((RVIR-RVRED)*F/M)

& + GAMMA*((1-E/M)** (AETA+I))
DIFF = ABS(KIR_TEST-_IR)
DIF MIN = MIN(DIFF,DIF MIN)
IF (DIFF.EQ.DIF_MIN)THEN

RIR EST= RIR TEST
RED--EST= RED--
EMEST= EM
GI--EST= (I-EM)** (AETA+I)
GS--EST= 1 - EM- GI EST
RGIR EST= (RIR - (RVIR*EM))/GI EST
RGREDEST= (RED- (RVRED*EM))/_IEST

ENDIF
120 CONTINUE
Write estimate values

WRITE(5,460) N,TIME,RED_EST,RIR_EST,EM_EST,GI_EST,GS_EST,
& RGRED_EST,RGIR EST

WRITE(12,460) N,_IME,RED_EST,RIR EST,EM_EST,GI_EST,GSEST,
& RG_KED_EST,RGIR EFT

ii0 CONTINUE
460 FORMAT(I8, FS.4,7 (F8.3) )

STOP
END
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